
-fIM 854 AI ENULATION TOOL FOR SIMULATING MATftIX OPMRTIAU ON 112
AN SIMO (SINGLE INS. (U) NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIV GREENSSO H L MARTIN OCT 87

UNCLASSIFIED RO-22328 2-NA-H DAAG29-84-G-87 F/G 12/5 U

"~1.0

L16111L=

1 .25 111114 11111_L

,w-wJ-w-vJ---J-w~--Vi 7-V __ -ww - -- W' - _'V

tN -_Ol FOR REPRODUTION PL RPOS

AD-A '188 654 ;111ENTATION PAGE 139 r-r
la REP(~~lb RESTRICTIVE MARKINGS UIb IL W

2a. SECURITY CLASSIFICATION AUTP EL%0T9L_ 3 DISTRIBUTION /AVAILABILITY OF REPORT
b ~ ~ ~ ~ ~ - AELSiIAINDWGA A Approved for public release;

2b DCLASiFIATIO / DWNGAD >1WELL Idistribution unlimited.

4 PERFORMING ORGANIZATION REAWUMBgVS) 5 MO0NITORING ORGANIZATION REPORT NUMBER(S)

AROI 22320.2-NIA-H

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMOL_ 7a. NAME OF MONITORING ORGANIZATION

N.C. Agricultural & Tech. (If applicable) .s.AmRearhOfc

6C ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211
Greensboro, NC 27411 Research Triangle Park, NC 27709-2211

Sa NAME OF FUNDING, SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I/f applicable) DAAG2 9-84 -H-008 7

U.S. Arm Re'search Of § ice I
83: ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT ITASK ~ WORK UNIT
ELEMENT NO NO. INO, ACCESSION NO

Research Trian4le Park, ';C 27709-2211 II
I 1 ';TLE (include Security Classification)

An Emulation Tool for Simulating M,,atrix Operations on an SIIMD Mult-processor

12 ERSONAL AUTHOR(S)

Hnrnld I. MPriin
13 YPE OF REPORT 13b, TIME CO VF.R 14. DATE)0F REPORT(YaMnhDy)5PGCON

3aFinal iFROM8 ' Z5O4 .4/7 Oct 87 35rMnta)[i ON

16 UPLEENARYNOATONThe view, opinions and/or fifidings cnandi hsrpr r hs
of I'h autlih'- shst~ asg4 conied i hsrpr r hs
nnIof ri " r-hp,d ld not bencnt ulAn d sAnfiia gartment of the Army position,

17COSATI CODES 18. SUBJECT TERM4S (Co tinue on reverse if necessary and identify by block number)

FiED GROU SUB-SofPt are, Algorithms, Emulators,
System Architectures, Code Generators

9 43S7RACT (Continue on reverse of necessary Iand identify by block number)

*The MJHl is a very good software tool to use

in the analysis of the correctness of various partitioning

algorithms. It has the potential to be a forerunner in the

0 discipline of Computer Engineering at North Carolina A & T State

University. This is possible because the emulator is easily

adaptable to fit system architectures other than SIMvfl. Through

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
EIUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. Q DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inlclude Area Code) 22c. OFFICE SYMBOL

.. DO FORM 1473.,84 MAR 83 APR edition may be used until exhausted. JULIAT-yCLASSIFICATION OF THIS PAGE
,I.All other editions are obsoleteUCAS

0 8' U12 FI"b 09?

SCCUmI TY CLASSIFICATION OF THIS PAGE(-. -1 Dat-, Entered)

23. XB3TRACT CONTINUED

,simulation, different architectures can be implemented, as well

as various algorithms for exclusive partitioning o arcst

perform simple matrix operations in a parallel or multiprocessor

environment.

The MJH1 Emulator has the potential to be expanded

tremendously. The instruction set could grow immensely. Also,

the emulator could be made into a smarter, more intelligent

machine by comb in ing some e x is t ing c onzand s and making its

language of a higher level.

* /i.9-{->on :r

/TSCR&

D T C A
4..I

COPY P~t't We
11
4
SPECTED 7 c1c

Un clas si f ie d

SECURITY CLASSIFICATION OF THIS PAGE(WPn Date Entered)

9.rnrrw~~~,urr7 nmV--.-T.r .'r, -w -- -T 1P ITS .7 T -

FINAL REPORT
U. S. ARMY RESEARCH1 OFFICE
Grant No: DAAG29-84-G-0087

An Emulation Tool For
Simulating Matrix Operations
On An SIMI)Multiprocessor

Dr. Harold L. Martin
Department of Electrical Engineering

N. C. A and T State University
Greensboro, N.C. 27411

Icu

FINAL REPORT
U. S. ARMY RESEARCH OFFICE

- Grant No: DAAG29-84-G-0087

An Emulation Tool For
Simulating Matrix Operations
On An SIMID Multiprocessor

Dr. Harold L. Martin
~ ~ Department of Electrical Engineering

N. C. A and T State University
Greensboro, N.C. 27411

'SW.U

-: - flf. - - . , - tr - ,fl ,,P w- r 4, . o - . - r--. .t . . .

Z.

CONTENTS

CHAPTER 1 OVERVIEW OF THESIS

1.0 INTRODUCTION . 1,."1.1 OBJECTIVE . 3

.12 ORGANIZATION......................3

* CHAPTER 2 SYSTEM ARCHITECTURE

2.0 INTRODUCTION 9
2.1 SIMD ARCHITECTURE 11
2.2 INTERCONNECTION NE1W)RKS 13
2.2.1 CYCLIC-SHIFT NEWARK..................13
2.2.2 CROSSBAR NEIDMORK 15
2.2.3 PERFECT SHUFFLE NETWORK 16
2.3 MIMI) MACHINES 17
2.4 SYSTEM ARCHITECTURE FOR MATRIX COMPUTATIONS 19

CHAPTER 3 PARTITIONING ALGORITHMS FOR MATRIX COMPUTATIONS

3.0 I NTRODUCT I ON 2...... 22
3.1 PARTITIONING ALGORITHMS FOR MATRIX ADDITION/

SUBTRACTION AND SCALAR MULTIPLICATION 22.........22
3.2 PARTITIONING ALGORITHMS FOR MATRIX MULTIPLICATION . 29

O 3.3 SLNfMARY 37

S. CHAPTER 4 THE MJH1

46 4.0 INTRODUCTION 39
4.1 SYSTEM ARCHITECTURE 39
4.2 MAJOR COMPONENTS OF THE MULTIPROCESSOR ARCHITECTURE 39
4.2.1 THE CONTROLLER 42
4.2.2 THE PROCESSING ELEMENT 42

- 4.2.3 1/0 SCHEME 44
4.2.4 CENTRAL MEMORY 44
4.3 THE MJHI EMULATOR 44
4.3.1 MAJOR COMPONENTS OF THE MJH. 46
4.3.1.1 GLOBAL CONSTANTS 46
4.3.1.2 THE INSTRUCTION SET 47
4.3.1.3 DATA TYPES 52

O 4.3.1.4 REQUIRED VARIABLES 53
4.3.1.5 PROCESSOR MODULE 54
4.3.2 PROGRAMMING THE MJHI 58
4.3.2.1 OPERAND FILE 58
4.3.2.2 CODE FILE 59
4.3.2.3 TRACE FILE.................. 60
4.3.2.4 RESULT FILE 61
4.4 FILE NAMING CONVENTIONS 62

:- 4.5 CREATING THE CODE FILE 62
4.6 RUNNING THE MJHI................... 66

V .;
; ; I'ltlil i

11141

CHAPTER 5 SUMM{ARY AND SUGGESTIONS

5.0 SUMMARY . 69

5.1 SUGGESTIONS 69

BIBLIOGRAPHY

APPENDIX A PROGRAM LISTING OF THE MJH1 EMULATOR

APPENDIX B SAMPLE CODE FILES FOR MATRIX MULTIPLICATION

If-i

List of Illustrations

F Fig u re Page

2.1 Hardware Model of Concurent Parallel Systems 4

2.2 SISD Block Diagram................6

2.3 SIMD Block Diagram.................7

2.4 MISD Block Diagram.................8

2.5 MIMI) Block Diagram.................9

-2.6 Parallel' Computers.................10

2.7 Cyclic-Shift Network...............14

2.8 Crossbar Network...................1

- ~ 2.9 Perfect Shuffle Network..............16

V2.10 MIMI) Multiple Processor Organization. 1

4.1 Block Diagram of Multiprocessor Organization 41

4.2 Block Diagram of Processing Element........43r4.3 Instruction Set 49

4.4 Flow Chart of Processor Module..........56

4.5 Sections of the Codefile..............64

4.6 Sample Codefile.................65

W- ,.

- .ListofTbe

Table Page

4.1 Global Constants..................47

4.2 Instruction Set..................48

4.3 Data Types......................52

4.4 Required Variables.................54

4.5 File Naming Conventions..............62

CHAPTER ONE

OVERVIEW OF REPORT

1.0 INTRODUCTION

By exploiting the parallel nature of matrix computations, a

ft.., system configuration has been proposed for performing the basic

matrix computations of matrix addition, subtraction, scalar

multiplication, matrix multiplication, and matrix inversion.

Algorithms have been developed for partitioning the matrix

structure on the basis of this inherent parallelism. A single

instruction multiple data stream machine, the Martin-Jones-Hughes

Version One (the MJH) has been developed for the efficient

allocation of computational tasks in a parallel processing

environment as prescribed by specific matrix operation

partitioning algorithms.

The concept of processing data in parallel arose from the

need to decrease computation time without decreasing the amount

of computed data [I]. Novel architectures have been developed,

i.e., Staran, Cray-I, etc., in order to capitalize on the

concept. These architectures facilitate the strategy of

distributing data evenly to a pre-determined number of processing

I elements (PE's) operating concurrently (in parallel) as opposed

SI ~.to sequentially (one after the other) and then routing all of the

-." intermediate results to a specified location for further PE

.4.- 4

Page 2

distribution, if required. This method of computing data is both

efficient and effective.

This idea permeates the concept of the parallel machine

realized in this report. The MJHl is a multiprocessor that is

capable of partitioning matrices for specified matrix operations.

After successfully partitioning and allocating the matrices, the

computation can be performed in a minimum amount of time.

.* Traditionally, the von Neumann computer has been the model

for all computers. However, due to rapid innovations in

technology, processing speed has become a factor. Since the von

Neumann machine is a sequential control flow machine,

computations must be done in series, even though they may be done

quicker by dividing the overall job among various sections of a

machine's memory. Many novel parallel architectures have been

invented because of the sluggishness of the von Neumann-like

machine.

The concept of parallelism, or concurrency, yields

efficiency. In circuit theory, circuits can be solved by

e defining currents via mesh or loop equations. The unknown

currents may be solved by using Cramer's Rule, an implementationU of the matrix structure. The loop method is a very general

Si method for defining specific unknowns. It follows that loop

equations can be implemented to describe parallelism. Loop

K equations can be used to solve matrices. Hence, matrices exhibit

some inherent parallelism. Because this is true, matrix

operations are easily adaptable to parallel architectures in

Page 3

order to perform matrix computations. Because of the inherent

parallelism of the solution techniques, matrices can be split up

or partitioned among several processors, operations can be

performed, and then their results written back to some central

location.

1.1 REPORT OBJECTIVE

The objective of this research was to develop an emulator

tool for verifying the matrix partitioning algorithms developed

by Sadhasivan [2]. The emulator that performs these operations

is the MJH1 [3].

1.2 REPORT ORGANIZATION

* An analysis of the parallelism exhibited in the matrix

multiplication operation is presented in this report. Algorithms

developed for efficient partitioning of the matrix structure and

the allocation of parallel computational tasks in a

multiprocessing environment will be simulated. Chapter Two

discusses various system architectures and their relative

interconnection networks. Chapter Three defines the partitioning

algorithms used to perform the various matrix computations.

Chapter Four expounds on the specifics of the multiple processor

architecture, including the control processing unit, the

S. arithmetic processors (PE's) and the 1/O capabilities. Also, the

emulator itself will be discussed. Finally, Chapter Five

includes a sunmaation of the work done to date, as well as

suggestions for future work.

I..z

Page 4

CHAPTER 1'9O

SYSTEM ARCHIITECTURE

2.0 INTRODUCTION

The idea of connecting N computers together to form one big

super computer is the basic idea behind parallel processing [4].

If realized, the throughput potential of N computers can be N

times that of one single computer. Thus, processing data in

parallel yields great "computing power," whic.A can approach a

linear gain in overall computation speed. Thus, the idea of

E dividing and conquering yields faster throughput [5,6]. A basic

hardware model of concurrent or parallel processing systems

follows.

I P II I P I . . . I p I

I NTERCIONNEC I ON

M M M

Figure 2.1

HARDWVARE MD(DEL OF CO)NCURRENT PARALLEL SYSTE]MS

kakI

6i Page 5

Parallel computer architectures can be grouped into four

distinct classes (7,8]. These four classes are distinguished by

the parallelism afforded by the instructions coupled with the

parallelism afforded by the data. Instructions or instruction

streams can be distinguished in the same manner. That is, data

streams can either be singular or multiple.

The classic von Neumann machine is classified as a Single

rn Instruction Stream Single Data Stream (SISD) machine. A block

diagram of the SISD architecture is pictured in Figure 2.2. This

sequential machine can only execute one instruction on one piece

of data at one time. Figure 2.3 shows the Array Processor or the

Single Instruction Stream Multiple Data Stream (SIMD) machine

which executes one instruction which acts on many pieces of data

simultaneously. Usually, these data are located in arithmetic

processors (APs) or in processing elements (PE's). These

processors that contain the data are controlled by some type of

control processor. This architecture class is easily adaptable

to performing computations that can be broken into a series of

vector operations, i.e. matrix operations. Perhaps the rarest

. configuration in practice is the Multiple Instruction Stream

Single Data Stream (MISD) machine as shown in Figure 2.4. This

machine exhibits parallelism in the instruction stream only and
0

allows several instructions to be executed on the same datum.

The fourth and final class of parallel computer architectures is

the Multiple Instruction Stream Multiple Data Stream (MIMD)

machine. This configuration allows for parallelism in both

." e.. streams, instruction and data. A block diagram of MIMI)

fs"

Page 6

architecture is in Figure 2.5.

I INSTRUCTION II DATA
I CONTROL I I. PROCESSING I-
I UNIT I STREAM ELEMENT I~ STREAM

Figure 2.2

SISD BLOCK DIAGRAM

Page 7

* I DS 1
PROCESSING G

,I ELEMENTI I 1

II PROCESSING I DS 2
* _~I ELEMENT I<

I iI 2

.,-, * ". CONTROL I1 I _
UNIT I I

.o

•' ", I. II

""I PROCESSING I DS N
t1 ELEMENT

>I N I

..:

* IS - INSTRUCTION STREAM
DS - DATA STREAM

Figure 2.3

SIMD BLOCK DIAGRAM

Page 8

I CONTROL I INSTRUCTION II
I UNIT I 1, PROCESSING 1

- I II STREAM I ELEMENT I

I CONTROL I INSTRUCTION I PROCESSING I
I UNIT I >1 ELEMENT Il<
I2 1 STREAM 1 2II

II2 1 1 DATA

I STREAM

CONTRO I INSTRUCTION I PROCESSING II
I UNIT 1 41 ELEMENT l
IN I STREAM I N

Figure 2.4

MISD BLOCK DIAGRAM

Page 9

-I CON"TROL I INSTRUCTION II DATA STREAM 1
I UNIT I >1 PROCESSING 1

1 1 STREAM I ELEMENT I

I CONTROL I INSTRUCTION I PROCESSING I DATA STREAM 2
I UNIT I____ ___ ELEMENT ____<___

I2 1 STREAM 1 2I
2 1

I CONTROL I INSTRUCTION I PROCESSING I DATA STREAM N
I UNIT 1 :-1 ELEM~VENT l<

IN I STREAM I NI
I N

Figure 2.5

MIMD BLOCK DIAGRAM

Page 10

Of the four classes of architectures, two can be used to

realize parallelism with respect to data manipulations. These

two are SIMD and MIMD machines.

In the class of SIMD machines, we distinguish between vector

and array computers. This distinction is based primarily on the

way data are communicated to elements of the system. Processors

in array computers typically access data from their own memories

and those of their nearest neighbors (through some type of shift

network). Vector computation has been supported through

pipelining or streaming and by synchronous multiprocessing.

Figure 2.6 summarizes this classification of parallel computers.

PARALLEL COMPUTERS

-p I

I I
SIMD MIME)

I I

VECTOR ARRAY

0I

J. I

PIPELINE MULTIPROCESSOR

FIGURE 2.6

PARALLEL COMPUTERS

,5% I

Page 11

2.1 SIMD ARCHITECTURE

The Array Processor, Single Execution Array, or SIMI array

is a machine that executes one instruction per array of data.

Distinguishing architectural features include: a control unit

3 that houses a local memory and can broadcast one single

instruction to all processing elements (arithmetic processors); a

predefined number of processing elements; processor memories (one

per processing element); a communication system among processors

and external data sources.

The main memory contains the combined memory of the N4

processor elements (PE's) and all of the instructions are stored

there. These are connected via a high speed data bus with a

bandwidth N times that of the individual memories and compatible

with both the processor and the I/0 bandwidths.

The number of available arithmetic processors and the number

*of computations required per processor for the complete execution

of the computation, determine the instruction stream broadcast to

the arithmetic processors by the control processor. In other

words, the system configuration determines the broadcasted stream
N

of information to the enabled parocessors. The processor must

know prior to runtime how the system is configured.

The instructions are fetched from the memory in blocks into

a buffer. These instructions can be of two types: control

L instructions executed by the control unit, or vector instructions

executed by the arithmetic processor. A listing of the

instructions for the MJHI is included in a subsequent chapter.

I A.

Page 12

Instructions of two different kinds leads to processing

idling which results in the inefficient use of processing times.

Processing idling can result when the controller executes a

scalar instruction, and the arithmetic processors are idle

waiting for the next operation. Alternatively, when computations

require more than one cycle of parallel processor operation, all

the processors may not be needed for the last cycle of operation.

This results in idle processors. Although processor idling can

-. occur, program execution and data manipulation in parallel is by

far faster than the sequential execution and manipulation of

• data.

d0 "

This problem can be alleviated, however, by buffering the

instruction stream. That is, fetching several instructions at

once and then distributing them evenly and efficiently;

instruction stream pipelining via the control processor; and

overlapping the instruction fetch sequence with data

manipulations not requiring main memory usage.

Since there is only one control processor, the processing

elements must be synchronized by that single processor. There is

only one clock per machine, one timing signal or clock controls

everything. This makes conditional branching to route data past

, -:certain idle processors virtually impossible.

. PE routing is achieved, instead, via the control processor

testing, setting, or resetting the mask bits a-sociated with

each. Various PE's only receive the broadcasted instruction or

data if they are enabled, i.e. if their mask bits are high.
4.a

0o

Page 13

Mask bits are set at the completion of an instruction fetch

cycle, prior to the execution of the next instruction. Mask bits

can only be set or reset by the control processor. However, this

mask checking slightly degrades the parallelism of the SIMD

machine.

2.2 INTERCONNECTION NETNURKS

Access and interprocessor cormunications are major problems

in the progranxning and design of SIMD machines. A number of

different networks have been proposed to achieve fast, efficient

0 conmiunications at a reasonable cost. Some of these

- 'interconnection networks are included in subsequent sections [91.

2.2.1 CYCLIC-SHIFT NETWORK

Also called the exchange network or the uniform shift

alignment network, the cyclic-shift interconnection network

, !involves several processors connected cyclically to facilitate

bidirectional data transfer between adjacent processors in a unit

shift time of one cycle. A cyclic shift is achieved by a

sequence of cyclic shifts of a unit amount. Between processors i

and j there are ((i-j-l) mod p) processors through which the data

must be shifted while moving from processor i to processor j.

The main advantage of the cyclic interconnection is the

constant number of connections it supports per processor in an N

processor system. Every processor is connected to its adjacent

neighbor. However, the network is very inefficient for

algorithms requiring noncyclic data permutations and may

idA6

I

Page 141

sometimes require N mask-and-shifts involving N alignment cycles

to route data to the appropriate processor for further J
manipulation. An illustration of this interconnection follows in

Figure 2.7.1

:, PE 1 1~> PE 2 1 1 ., PE N b

I I I G R 2.7

______CYCLIC-SHIFT _______________________

____ _______ _______ ___Itk
______________________________ _____________________________ _____________________All_____

Page 15

2.2.2 CROSSBAR NE1W2URK

9 This interconnection network in its simplest form can be

positioned between the source units and destination units to

implement the data movement in one transfer instruction. This

network, known for its simplicity, is an N by N array of

switches, with the N source units connected to the rows and the N

destination units connected to the columns. The network is

bidirectional. Each processor and memory has an input and output

connection to the network and simultaneous conflict-free

connections from any source to any destination for a one-to-oned

mapping.

A major disadvantage of the crossbar network is that Its

size grows by N squared with the subsequent addition of PE's.

*This increase is quadratic in nature and is not compatible to the

typical linear increase found in parallel processing. Thus, the

crosbar network is best suited for systems that confiure a small

number of source and destination units. A block diagram of the

" *crossbar network follows. This configuration consists of four

a " processing elements.

FIGURE 2.8
CROSSBAR NE1VORK

',p

Page 16

2.2.3 PERFECT SHUFFLE NEWIORK

This network derives its name from the shuffling of a deck

of cards. The basic idea involves splitting N processors into

equal halves and interlacing them. The ith processor of the

unshuffled deck is bidirectionally connected to the ith processor

- of the shuffled deck. The perfect shuffle connection pattern

routes data from position P to position P'.

The above mentioned interconnection networks are typical in

many SIMI) machines. However, processors may be dedicated to

highly specialized algorithms, and their interconnections may be

designed specifically for the implementation of these algorithms,

-: and may be different from the ones mentioned in this thesis.

SI.MD machines tend to exhibit more speed of computations. This

is primarily due to the fact that SIMD machines do not require as

much synchronization, task scheduling, and system software as

does the MIMD machine. Also, high reliability of the SIMI)

configurations can be attributed to the redundancy of the data

manipulations.

2 29'F

0 -------------- 0
FIGURE 2.9

PERFECT SHUFFLE NE1WDRK
p. .

,-0 .. - - - - . - -,,41, . , , , % .,, , , , . , . , ,

Page 17

2.3 MIMD MACHINES

As stated before, MlID machines are computers with one or

- more general purpose processor, each capable of executing a

separate stream of instruction on a stream of data that is housed

i in central memory. In essence, the advantage of the MIMD machine

is its capability to share memory, I/O units, and several

computing units. Because MIMD architecture is centered around

the concept of shared resources, MIMD machines are broadly

- classified into two categories: tightly coupled systems, and

loosely coupled systems.

Tightly coupled systems consist of several centrally located

processors that share the same memory and data structures and are

supervised by a single operating system. Loosely coupled systems

are comprised of independent computer systems that are physically

distributed at several locations and supervised by a distributed

3 Ioperating system. Each processor has its own system software and

- data structures, and shares a common data base with the other

systems via slow speed coniunication lines.

There are two methods of managing multiprocessor systems.

One approach involves a hierarchical organization with functional

.- .division amongst the processors and supervisor controlling the

specialized functional units. An alternate approach involves a

network of independent computing systems communicating with each

other on an equal basis. In both methods, the individual

processors execute the individual instruction streams assigned to

S ,them sequentially.

Page 18

Since the MIMD system is more flexible than the SIMD

machine, it is more suitable for a large class of computations.

However, flexibility comes with a price. That price is

synchronization and allocation problems. The partitioning of the

physical problem into several processes that can be executed in

parallel is of major concern in the MIMD machine. However, MIMD

systems are configured for ease, overall reliability, with

functional specialization for overall throughput. Despite this,

the problems of resource allocation, synchronization, and problem

partitioning will not allow the realization of MIMD computers
! 4.

0 with several processors. Coupling refers to the ability of the

various processors to share resources. Figure 2.10 shows a

breakdown of the MIMD class of parallel computer.

MIMD

Vo.•

TIGHTLY LOOSELY
COUPLED COUPLED

MULTIPROCESSOR COMPUTER
SYSTEMS NEWhORK S

.. FIGURE 2.10

MIMD MULTIPLE PROCESSOR ORGANIZATION

04

° • •-

Page 19

2.4 SYSTEM ARCHITECTURE FOR MATRIX C%),PLATIONS

The system realized via this thesis is designed specifically

. for the solution of various matrix computations. The SIMD

configuration was chosen to satisfy the special purpose

requirements for the matrix operations of solution of

simultaneous equations and matrix transpose. All these

operations can be done in parallel.

The system architecture configures a system of K arithmetic

processors, each equipped with local memories interconnected in a

4bidirectional cyclic-shift fashion. Each processor is

individually connected to the control processor, and to central

memory. Communication to the controller is achieved via

9 handshaking signals, To avoid bus contention, the data required
4.,

1- .. for the computations are assigned to each processor's local

'-P memory during the initial transfer of data, prior to runtime.

The controller also broadcasts the intended operation to be

performed along with the data values. What is not broadcast, Is

the operand addresses since the processors execute the specified

* operations on the data that is stored from a specific starting

address in their local memories. To further avoid bus

contention, the controller monitors the state of each arithmetic

*@ processor and keeps track of the number of computations tp be

performed by each processor. The controller can test and set

mask bits in order to shut out idle or unnecessary processors.

.q ,

V ..

Page 20

Interconnection between arithmetic processors involving data

transfer is as follows. Data to be transferred is put onto the

shift port. Then, through unit cyclic shifts, the data is passed

from processor to processor until an enabled (or strobed)

processor receives the data from the port and puts it into its

shift memory. The controller strobes the appropriate destination

processor. Note that the controller only has access to the

computed results at the end of all task executions.

The allocation algorithms reside in the main memory of the

controller. The algorithm is system based, so once the number of

arithmetic processors in the configuration has been defined, the

data allocation and data transfer operations are expressed as

only a function of the input matrix dimensions.

The system architecture discussed above is implemented in

software by using Pascal. The data allocation and control

algorithms and the specific details of the system hardware and

related software, implementing the synchronization, execution and

coordination of the various matrix computations in parallel, are

* explained in detail in the chapter that expounds on the MJHI.

In conclusion, SIMD and MIMD systems are the most prevalent

architectures among parallel machines today. It has been noted

that SIMI) systems are well suited for matrix computations due to

the inherent parallelism found in matrices. This is true because

there is not a synchronization problem like the one found in MIMD

architectures, since all PE's are controlled by the processor.

4i

Page 21

However, in SIMD systems, the system software ignores the

parallel architecture and reveals it to the user, allowing

maximum benefit without any system software overhead. This in

, "turn passes the burden of programming required to exploit the

inherent parallelism to the user.

A,.

0

.Ji .d

.N

S

V.= "

Lf"

"A

Page 22

CHAPTER THREE

PARTITIONING ALGORITHMS FOR MATRIX COMPUTATIONS

3.0 INTRODUCTION

In this chapter, the actual algorithms for partitioning the

matrix structure for basic matrix computations are presented.

More specifically, the partitioning algorithms for matrix

addition/subtraction and scalar multiplication (each share

identical algorithms), matrix multiplication, and matrix

inversion are stated as allocation theorems. These theorems were

developed and proven by Sadhasivan. For a more indepth study of

the actual algorithms, including theorems, corollaries, and their

proofs, the author refers the reader of this document to the

thesis written by Sadhasivan [2].

The allocation theorems for each basic matrix computation

will merely be stated in this chapter for clarification purposes,

as well as for completeness. They are the basis for the proposal

of performing matrix computations on an emulated

microprocessor-based SIMD multiprocessor.

3.1 PARTITIONING ALGORITHMS FOR MATRIX ADDITION/SUBTRACTION AND

- SCALAR MULTIPLICATION

*O Let the matrices involved in these computations be,

'W,

1%1

Page 23

[A] [B] [C]

.

M1 x N + M xN M MN

Note that m is the number of rows and n is the number of
_1

columns of [A], [B], and [C]. Assuming the number of arithmetic

processors to be k, the partitioning algorithms can be defined

for the different occurances of parallelism in the matrix

.- structure and its operations as shown below.

l.a. If m-k, then the allocation of [A], [B], matrix values are

done according to the following theorem:

Theorem: One row of [A] and the corresponding row of [B] are

-iallocated to each processor.

l.b. If m is a multiple of k, then the allocation of matrix

values is done according to the following theorem.

Theorem: (m/k) rows of [A] in order, and corresponding rows of

[B] are allocated to each processor.

2.a. If n-k, then the allocation of matrix values is done

according to the following theorem.

- Theorem: One column of [A] and the corresponding column of [B]

are allocated to each processor.

2.b. If n is a multiple of k, then the allocation of matrix

values is done according to the following theorem.

Theorem: (n/k) columns of [A] in order, and the corresponding

Page 24

acolumns of [B] are allocated to each processor.

3. If t-(mn) and if t>O then,

a. if t-k or t is a submultiple of k and.

i. if m<-n, then the allocation of the input matrix values

is done according to the following theorem.

Theorem: For i-l to m

{ for j-1 to n

{(ni+j-n)th processor is allocated the values A[i,j]

and B[i,j], to compute the result matrix value

C[i . j].

} /* for j /

} /* for i */

ii. If m>n, then the allocation is done according to the

following theorem.

Theorem: For j-l to n

{ for i-I to m

((mj+i-m)th processor is allocated the values of

A[i,j] and B[i,j] to compute the result matrix

value C[i,j].

} / for i 8/

} /* for j /

3.b. If t is a multiple of k, such that t-jk and,

i. if m<-n i.e. m is a submultiple of k such that k-qm, then

the allocation of [A] and [B] values is done column wise

according to the following algorithm.

Theorem: For i-I to q

{ for r-1 to m

-for c-O to (j-1)

Ir

Page 25

{((i-l)m+r)th processor is allocated the

A[r,(cq+i)] and B[r,(cq+i)] values to

compute the result matrix value C[r,(cq+i)J

}/* for c '

}/* for r

} /* for i 8

4,ii. If m>n, i.e. n is a submultiple of k such that k-qn

(m-jq), then the allocation of [A] and [B] values are

done row wise according to the following theorem.

Theorem: For i-i to q

{for c-i to n

f for r - 0 t o (j-

(((i-1)n+c)th processor is allocated the

ri A[(rq+i),c] and B[(rq+i),c] values to compute

the result matrix value C[(rq+i),cJ

}/8 for rT

}/* for c 8

} /* for i 8

4. If t is not related to k, then letting j-It/k I and,

a. if m is a submultiple of k such that k-mq and letting i-jq

(also note that if tA. then n~.q), the allocation of [A] and

* - (B] values are done according to the following theorem.

* Theorem: For 1-1 to (n-I)

{for T-1 to In

{((l-I)rn+r)th processor is allocated the A~rI] and

B[r.l] values and.

if tAk then

For c-I to j

Page 26

(A[r,(cq+l)] and B[r,(cq+l)] values are also

allocated to the same processor

} /* for c /

to compute the corresponding values of the result matrix [C]

} /* for r

S/* for 1 /

if t>k then

for 1-(n-i+1) to q

- for r-l to m

{ for c-O to (j-1)

{ ((l-l)m+r)th processor is allocated the

A[r,(cq+l)] and B[r,(cq+l)] values to

compute the result matrix value C[r,cq+l)]

S/* for c*/

. /* for r

} /* for 1 0/

4.b. If n is a submultiple of k such that k-qn, and letting i-jq

(if t>k, m>q), the allocation of [A] and [B] matrix values

are done according to the following theorem.

Theorem: For 1-1 to (m-1)

{ for c-I to n

{ ((l-1)n+c)th processor is allocated the A[l,c] and

B[I c] values and,

if tk then,

for r-I to j

(A[(rl+l),c] and B[(rq+l).c] values are also

allocated to the same processor

04

.u~

Page 27

} /* for r /

to compute the corresponding values of the result

matrix [C]

} / for c '/

} /* for 1 /

if t>k then

for l-(m-i+l) to q

{ for c-1 to n

{ for r-O to (j-1)

{ ((l-I)n+c)th processor is allocated th,

* " A[(rq+l),c] and B[(rq+l),c]

S/* for r */

} /* for c */

'i) } / for 1 /

5. If the total number of elements of [C] to be computed,

t -mn, is a totally random value, then letting q-lt/kl

j and r-qk, the partitioning and allocation of the input

matrix values can be done according to the following

theorem.

* 1. The positions of [A] and [B] matrix values are first

individually modified to represent them as linear lists such
-'

. that, the value A[ij] or B[ij] occupies the (ni+j-n)th

, position in the linked lists.

2. For p-I to (t-r)

{ processor p is allocated the pth values of [A] and [B]

from their linear lists and,

if t>k then
, o. i."to

,, for i-I to q

Page 28

{ (ik+p)th values in the linked lists of [A] and [B] are

also allocated to it

,, /* for i*/

to compute the corresponding values of the result matrix

[C]

S/" for p */

if t>k then,

for p-(t-r+l) to k

• for i-O to (q-1)

{ pth processor is allocated the (ik+p)th values of

(A) and [B] from their linear lists to compute the

corresponding values of the (C] linear list.

) /* for i */

I /* for p */

The partitioning algorithms for scalar multiplication of an

input matrix are the same as those suggested for matrix

addition/subtraction except that now instead of two input

matrices, only one input matrix and the scalar value are involved

in the allocation. The computation involved in this case is

obviously the multiplication operation instead of addition or

subtraction and the computation time of the result is

consequently expressed in terms of multiplication time for the

evaluation of an element of the result matrice instead of

addition/subtraction time required to compute the same element.

'p.
* 'p

Page 29

3.2 PARTITIONING ALGORITHMS FOR MATRIX MULTIPLICATION

N For the discussion that follows, let the matrices involved

-" -in the computation be defined as shown below,

[A] [B] [C]

M x N N x P M X P

Note that m is the number of rows of [A] and [C], n is the

number of columns of [A] and rows of [B], and p is the number of

columns of [B] and [C]. If interconmiunication between arithmetic

processors is to be avoided during the matrix multiplication

operation, then all the values of a specific row of [A] and all

the values of an appropriate column of [B] required to compute a

product element of the result matrix [C], should be allocated to

a single processor, to compute that product. The evaluation time

i tof each element of the product matrix [C], is referred to as the
p

computation unit time throughout our discussion. With these

e' ;assumptions and using the above mentioned representation for the

matrix structure, the partitioning algorithms for multiplication

can be defined.

I. If the number of values of the result matrix, t -mp,

is equal to the number of arithmetic processors, k or

is a submultiple of k, then the allocation of [A] and

Page 30

[B] values is done as shown,

Theorem: One row of values of [A] and one column of values

of [B] are allocated to each processor, according

to the following theorem,

For r-l to m

{ for c-i to p

(((r-l)p+c)th processor is allocated the]
rth row of values of [A] and the cth

column of values of [B] to compute the I
value C[r,c] of the result matrix

} /* for c '/

S/* for r /

2.a. If the number of columns of the product mattrix, p,

equals k, then the allocation is done as follows,

Theorem: The entire matrix [A] and one column of values of

[B] are allocated to each processor.

b. If p is equal to a multiple of k, then the allocation

is done as follows,

Theorem: The entire matrix [A] and (p/k) columns of values

* of [B] in order, are allocated to each processor.

3.a. If the number of rows of matrix [A], m equals k,

then the allocation of input matrix values is done

I! according to the following theorem.

Theorem: One row of values of [A] and the entire matrix

[B] are allocated to each processor.

b. If m is a multiple of k, then the allocation of

[A] and [B] matrix values are done according to the

following theorem,

, . ?. . - .

Page 31

Theorem: (m/k) rows of values of matrix [A] and the entire

[B] matrix are allocated to each processor.

4. If t - mp, is a multiple of k, t - jk and,

a. if m<-p i.e. m is a submultiple of k, k - qm, then the

allocation [A] and [B] values is done as follows.

Theorem: For r-I to m

{ for c-1 to q

{ ((r-I)q+c)th processor is assigned the rth row

values of [A] and cth string of j columns of

[B] in order.

} /* for c 3/

- :.: } /* for r

b. If m>p i.e. p is a submultiple of k such that k-rp,

then the result matrix [C] is computed row wise

according to the following theorem,

Theorem: For q-1 to p

{ for c-i to r

{ ((q-i)r+c)th processor is assigned the

cth string of j rows of values of [A]

in order and qth column of values of

[B]

} /* for c /

SI* for q ./

5. If t - mp is > k, but not related to k and,

a. if the number of columns of [A), n is equal to k.

then the allocation of [A] and [B] values is done

.. according to the theorem presented next. Note

that interprocesmor communication for the addition

Page 32

of partial products generated in each of these

processors, to give a final product element of [C].

Theorem: One column of values of [A] and one row of

values of [B] in order, are allocated to each

processor. Each processor calculates each of

the n or k partial products by using the column

- of values of [A] and relevant row of values of

(B] stored in it. The final product is

obtained by adding the n partial products by

means of unit shifts between the processors

* Ofollowed by parallel additions of these

partial products.

b. If n is a multiple of k, the allocation of [A]

and [B] values is done according to the following

theorem. (Note that interprocessor communication

- takes place through the cyclic shift interconnection

provided in the system architecture).

Theorem: (n/k) columns of [A] and (n/k) rows of [B]

in order are allocated to each processor.

*@ c. If n is a submultiple of k and,

i. the number of elements in [A]. (inn) is a

*. multiple of k. then the allocation of (A] and

[B] values are done according to the following

theorem.

Theorem: For r-I to n

(for 1-0 tp (k/n-I)

{ (ln+r)th processor is assigned (l+I)th,

(mn/k) values of column r of [A] and

Page 33

the rth row of values of [B]

'/* for 1 *

} /* for r

- ii. if the number of elements in [B], (np) is a

p, multiple of k, then the allocation of [A] and [B]

,. values are done as shown below.

Theorem: For c-I to n

{ for 1-0 to (k/n-I)

{ (ln+c)th processor is assigned the cth

* .column values of [A] and (l+l)th string

of (np/k) values of row c of [B]

" /* for I /

} /* for c

d. if n is a submultiple of k, but the number of

- elements in [A] and in [B] are not a multiple

of k but,

m I i. m->p; then letting j-Imn/kI and i-jk/n, the

allocation of [A] and (B] values is done

' according to the following theorem.

Theorem: For c-i to n

{ for 1-0 to (k/n-i)

•: ."{ (ln+c)th processor is assigned the

.6 (ln+l)th string of (in/k) values of

column c of [A] and cth row of values

of [B]

)I /* for 1 0/

) /* for c

Also the additional values of [A] are allocated

- L
,--=]

Page 34

such that,.1'
for r-(i+l) to m

"' { for c-l to n

{ ((r-(i+l))n+c)th processor is

allocated the cth column value of the

rth row of [A]

I* for cN
} /* for r */

Each final product is obtained by shifting and

adding the n partial products between the string

of n processors. For synchronization purposes,

the i rows of [C] are first evaluated column

wise after which, the remaining (m-i) rows of

[C) are computed.

ii. if m<p, then letting j-lnp/kl and i-jk/n, the

allocation of (A] and [B] values is done

according to the following theorem.

Theorem: For c-l to n

V. { for 1-0 to (k/n-1)

[O { (ln+c)th processor is assigned the

... ctb column of [A] and (l+i)th string

of (in/k) values of row c of [B]

01,O,) /* for I '/

} /* for c 1

Also the additional values of [B] are allocated

such that,

for c-(i+l) to p

{ for r-I to n

@4

low -~

.. - = •- • ~~~~- -, , : " -- - - --- --. ° - - V- V- L ;
i

Z . - 1 - 17

S"

r

Page 35

{ ((c-(i+l))n+r)th processor is allocated

the rth row value of cth column of [B]

} /* for r /

' I* for c

Each final product is obtained by shifting and

adding the n partial products between the String

of n processors. For synchronication purposes,

the i columns of [C] are first evaluated, followed by

-S 7the eveluation of the remaining (p-i) columns of [C].

e. if m is a submultiple of k, then letting j-lmp/kl

*? and i-(p-jk/m), the allocation of [A] and (B]

values is done according to the following theorem.

Theorem: For s-1 to i

{ sth string of m processors is allocated

m rows in order of [A] and,

for c-O to j

{ (ck/m+s)th column of values of [B]

} /* for c

- /* for s

In addition, the following allocation is made,

for s-(i+l) to k/m (if s<p)

{ sth string of m processors is allocated

the m rows of [A] in order and,

for c-O to (j-1)

{ (ck/m+s)th column of values of [B]

L.' } /* for C ./

) I for s

Note that interprocessor communication

L • ,,,

Page 36

is not required in this scheduling

algorithm.

f. if p is a submultiple of k, then letting j-lmp/kl

and i-(m-jk/p). the allocation of [A] and [B]

values can be done according to the following

theorem.

Theorem: For s-I to i

{ sth string of p processors is allocated

the p columns of [B] in order, and

for r-O to j

{ (rk/p+s)th row of values of [A]

} /* for r

} /* for s /

In addition, the following allocation is made:

for s-(i+l) to k/p (if s<m)

" sth string of p processors is allocated p

columns in order of [B] and,

for r-O to (j-l)

.. 4 (rk/p+s)th row of values of [A]

) /* for r /

" /* for s

Note that no interprocessor communication

0.6 is required for this scheduling algorithm.

6. If the values of m, n, and p are totally

arbitrary, defying any trace of parallelism,

then letting t-(mp), q-lt/kI and r-(qk), the

allocation of [A] and [B] values is done by

first establishing a linear relationship

04I

Page 37

- between the individual values of product

matrice [C] such that, the element C[i,j]

occupies the position (pi+j-p)th location

in the linear list. With this assumption,

the allocation of [A] and [B] values among

the processors can be done according to

the following theorem.

Theorem: For s-1 to (t-r) /* parallel sequence */

{ for 1-0, and if (t>k) then, /* serial

1 to q sequence ./

{ sth processor computes the (lk+s)th

value in the linked list of [C]

} /* for 1 /

*) /* for S

If (mp)>k, then

for s-(t-r+l) to k /* parallel sequence '/

{ for 1-0 to (q-1) /* serial sequence /

{ sth processor computes (lk+s)th

value in the linked list of [C]

} /8 for I ,/

3.3 ! } /* for a

":~ 3.3 SLNMVIRY

The preceding theorems are the formulae for partitioning

matrices efficiently for the speedy performance of the basic

operations of addition, subtraction, and scalar and matrix

multiplication. There are some algorithms developed for matrix

Inversion, also, but they are not encompassed within the scope of

Page 38

this report. In fact, this report deals explicitly with

verifying the partitioning algorithms for matrix multiplication.

However, the emulator can presently handle matrix addition,

subtraction, and scalar multiplication. For that reason, they

were included in this section. Martin and Sadhasivan [10,11,12]

have researched other relevant issues that are aroused by these

algorithms. Their findings have been published, and may be

referred to in order to enhance one's knowledge or this subject.

It is hoped that the reader will be able to follow the

aforementioned theorems, coupled with the instructions for

progranmming the MJHl to successfully partition and execute a

." basic matrix computation via the MJHI emulator.

i0

,%

CHAPTER FOL

THE MARTIN-JONES-HUGHES VERSION ONE

4.0 INTRODUCTION

p The Martin-Jones-Hughes Version One, as previously stated,

is an emulated multiprocessor designed specifically to perform

matrix computations. A software description of the MJHi is

written in the structured progranmning language of Pascal. The

* - partitioning algorithms of Chapter Three were developed

exclusively for mapping the matrix operations of addition,

subtraction, scalar multiplication, and matrix multiplication

onto a multiple processor architecture such as the MJHI. These

algorithms have been shown to provide a much faster execution

time when implemented on an appropriate multiple processor

" •system. The MJH1 simply verifies the partitioning algorithms and

allows for the intuitive evaluation of computational times

associated with each algorithm.

The specifics of the MJHI will be discussed at length in the

subsequent sections of this chapter.

te

4.1 SYSTEM ARCHITECTURE

The MJHI is classified as a Single Instruction-Stream

Multiple Data-Stream machine. It exemplifies the following

attributes:

-a single controller

-an array of 8 processing elements

-an Input/Output scheme

.-.

Page 40

-central memory

In the subsections that follow, the components of the

multiprocessor will be thoroughly discussed.

4.2 MAJOR CaMPONEN TS OF THE MWLTIPLE PROCESSOR ARCHITECTURE

A block diagram of the system architecture is given in

Figure 4.1. A single control processor is connected to a maximum

of eight processing elements (PE's). A data bus is accessible to

all eight PE's via a Status Bit that is associated with each PE

configuring the system. The bits are numbered from bit zero to

bit seven, with the most significant bit of the status vector

referring to PE 0 and the least significant bit of the status

vector referring to the last (highest numbered) PE in the

configuration. Instead of having an address bus that contains

the address of specific PE's, they (PE's) are identified or are

- activated when their respective status bit is turned on (with a

logical 1). The PE's are capable of reading from and writing to

the central memory. Overall system I/O is done via the central

memory. That is, individual processing elements do not have

access to the outside world. They communicate with central

memory, which in turn interacts with the outside world. Operand

matrices are read into the PE's, the operations performed, and

the results returned to the central memory of the control unit.

r o r 'r f- ,,' %

4o."

4:.i

, itxW W W A mT.- - - W WN

%

Page 41

CONTROL UNIT

* CENTRAL MEXUIRY

PEIPE2 <-P

4

Fiu e .

BLC IGA FMLIRCSO RUETR

Page 42

4.2.1 The Controller

The controller is responsible for initializing all PE's at

- runtime. Initializing processing elements involves zeroing Out

" all memory in the PE's and calculating their shift neighbors

(should a shift function need to be performed). The controller

is a general purpose computer with central memory and

input/output capability.

The control processor is also responsible for program

execution. A typical instruction execution proceeds in the

following manner. The control processor fetches an instruction

*from central memory and broadcasts it to all PE's. Only the

enabled PE's will be affected by the broadcasted instruction.

The instruction is then decoded and executed by the appropriate

PE's. The memory address register of the controller is then

incremented and the next instruction is fetched, broadcasted, and

executed. The cycle continues until a CPHalt instruction is

invoked.

4.2.2 The Processing Element

Each processing element is identical to one another. A

typical PE has an ALU of its own that can perform addition,

subtraction, division, scalar multiplication, and matrix

multiplication. A typical PE has its own memory, which is

referred to as local memory. This local memory is partitioned

into three sections: memory A (MA), memory B (MB), and memory R

(MR), where A, B, and R refer to the operand matrices (A and B)

and the result matrix R. Also, each enabled PE executes

-*5. ..- ,- -I,, . . . , , . ,, . , . . .

104 €--.-, '. ' '- '- ' - - " " T " " " " " " "" " " " "" " " " " "
.N.%. ,- ,% % . .% - . % , ' . -'. - ., . .' - ,% %

Page 43

instructions that are broadcasted to it by the Controller. This

execution is referred to as concurrent or parallel processing. A

block diagram Of the PE is shown in Figure 4.2.

MA M

MR MS

LOCAL MEMORY

SPORTSPORT

ARITHMETIC LOGIC UN~IT

Figure 4.2

BLOCK DIAGRAM OF PROCESSING ELEMENT

z 3o

Page 44

4.2.3 I/O SCHEME

The Input/Output (I/O) of data is performed by the control

processor. Data can either be written into central memory by

various active processing elements, or it can be accessed by

those same active processors. That is, each active processing

element can write to as well as read from central memory. This

data traverses along a common bidirectional data bus.

Along with reading and writing matrices, each PE is capable

of sending and receiving data to or from other neighboring PE's

0 via a shift network. The shift network consists of a shift port

(SPORT) and a shift memory. This shift memory (MS) is also

located within the local memory of each PE.

4.2.4 CENTRAL MEMORY

The central memory (CM) contains the instruction sequence

needed to perform a particular computation. Also contained in

central memory are the operand matrices, A and B. After the

result matrix, R, has been generated via the active PE's, it,

* too, is stored into central memory, where it awaits to be

accessed and written out to the outside world.

4 .3 THE MJIHI EMIULATOR

The MJHI Emulator is a software tool that emulates the

multiprocessor architecture that has been previously described.

This emulator was first written by E. Jones [3], and later

modified by the author of this thesis. The emulator is written

in Pascal mainly because it is a structured programming language

Page 45

and is more conducive to describing the various modules that are

necessary in defining this SIMD architecture in software. Also,

Pascal is a fairly simple language. A program listing of the

emulator is included in Appendix A, however, the major components

p of the emulator will be discussed here.

Since the MJH1 emulates a machine that is capable of

executing instructions to perform the partitioning of matrices,

it is, in essence a simulated computer. Thus, in order to show

that this emulator is indeed practical, a discussion of the type

- of instructions that must be included in a practical computer

follows.

A computer should have a set of instructions that allows the

user to formulate any conceivable data processing task. To

. . ensure this, the computer (or in this case, the emulator) must

include a sufficient number of instructions in each of the

3 following categories:

1. Arithmetic, logical, and shift instructions.

2. Instructions for moving information to and from memory and
processor registors.

' 3. Instructions that check status information to provide
* " decision making capabilities.

. 4. Input and output instructions.

5. The capability of stopping the computer.

Since the MJHI provides instructions from each category

listed, it is a functionally complete machine [13].

Page 46

4.3.1 MAJOR COMPONENTS OF THE MJH1

The MJHi is composed of several modules. On- such module

defines the global constants that are used in defining the actual

configuration of active processors. A definition of the

instruction set comprises another module of the emulator. Next,

a declaration of the data types used in defining variables used

in the emulator are included. Variables required to successfully

run the emulator are contained in yet another module. The module

which has the most impact, however, is the processor module.

This module contains code for executing the overall instruction0

set, which consists of both contro! processor and processing

element instructions. This section also contains the Pascal code

for processor initialization, as well as for processor-state

dumping into the trace file. These modules will be further

discussed in the subsections that follow.

4.3.1.1 GLOBAL CONSTANTS

Table 4.1 contains a listing of the global constants that

are used throughout the emulator. These constants define the

actual configuration of each active processing element.

N.4%

'4-'I.

4 LPage 47

" TABLE 4.1

- (* Global Constants: These define the actual configuration)

cons t

MAXNP - 8 ; { Max Number of arithmetic processors. }
NPMI 7; { Number of processors minus one. I
MEW fX - 256; { Size of each AP local memory. }

* CPMEMiAX - 2048; { Size of central memory (CM).
SHREGMAX - 1; { Size of shift-register memory.
NMAXDATAVAL - 25600; (Hypothetical overflow value. }

*2 zeroval - 0; { Constant for integer data type. }
trueval - '1'; { Char representation of logical "true".)
falseval - '0'; { Char repr'n of logical "false".

Overall central memory of the multiprocessor architecture is

4 simulated here, along with the individual processors.

4.3.1.2 THE INSTRUCTION SET

The MJH1 consists of forty instructions. These instructions

are of two types: Processing Element (PE) instructions and

Control Processor (CP) instructions. Two instruction sets are

necessary due to the nature of the multiprocessor architecture

that is being emulated. The instruction set for the MJH1 is

sumnarized in Table 4.2. Note that PE instructions have two

digit opcodes, while CP opcodes have three digit opcodes.

p'i...

5 Page 48

TABLE 4.2

(* PE INSTRUCTION SET MNEM10NICS AND OPCODES. *)

(MISCELLANEOUS INSTRUCTIONS.)
NOOP - 0; { No Op: Allows documentation of code.

{ ADDRESSING INSTRUC-rIONS. }
ADBASE - 10; { Advance LM base register. }
SETB - 11; (Set LM base register to vector origin.}
ALLOC -12; (Allocate c more words in LM. }
SETMA = 15; { Set MAR to address in CM. }
AEMA - 16; { Advance MAR by specified value. }

{ CM ACCESS and SHIFT INSTRUCTIONS. }
LOADCM - 20; { Load into LM from CM. }
STORQC - 21; { Store into CM from LM. }
FCSHF - 22; { Forward circular shift.
BCSHF - 23; { Backward circular shift. I
PSSHF - 24; (Perfect shuffle shift. }
SHFIN - 25; { Receive shifted data. }
SHIFX- 26; { Put data on shift port. }

{ DATA M0'VEMENT INSTRUCTIONS.
MOVA - 30; { Move data to MA from another LM. }
MDVB - 31; { Move data to MB from another LM. I
MD'VR - 32; { Move data to MR from another LM. }
MOVS - 33; { Move data to MS from another LM. I

{ SCALAR ARITHMETIC INSTRUCTIONS.)
SADD - 40; { Add scalar values in MA and MB. }
SSUB - 41; { Subtract scalar values in MA and MB. }
SMPY - 42; { Multiply scalar values in MA and MB. }
SDIV - 43; { Divide scalar values in MA and MB. }
SMSA - 44; { Add MS[i] to a LM. }

VECTOR-SCALAR ARITHMETIC INSTRUCTIONS.

{ NOTE: Vector in MA, Scalar in MB. I
VSADD - 50; (Add scalar to vector. }
VSSUB - 51; 4 Subtract scalar from vector. }
VSMPY - 52; 4 Multiply vector by scalar. }
VSDIV - 53; 4 Divide vector by scalar. }

4 VECTOR-VECTOR ARITHMETIC INSTRUCTIONS. }
PVADD - 60; 4 Pair-wise vector addition. }
PVSUB - 61; 4 Pair-wise vector subtraction. }
PVMPY - 62; 4 Pair-wise vector multiplication. }
INPRD - 65; 4 Vector inner product. }

4 STATUS-CHECKING INSTRUCTIONS. I
TST - 70; 4 Test statunword for error condition. }

.1

wT 171 -T-1 . - - - -' - i ~

Page 49

(* CP INSTRUCTION SET INENUNICS AND OPCODES.

{ CONTROL INSTRUCTIONS.}

C RCENABLE - 100; { Enable processors specified by mask. }
PUSIM - 101; { Push current active mask onto MSTACK.I
PULLM - 102; { Restore (pull) mask from MSTACK. }
SETT - 103; { Set MJHI TRACE level. }

,-. CPHALT - 255; { Shut down Control Processor. }

{ I/O INSTRUCTIONS. I
MREAD - 110; { Read M x N matrix into CM.)
MREADB - 113; { READ M x N matrix [B] into CA }
MRVRITE 111; { Write M x N matrix stored in C.

{ DATA MANAGEMENT INSTRUCTIONS. }
SETV - 120; { Set range of CM locations to value.

Each instruction consists of an opcode followed by three

operands. An illustration of the instruction format is shown

below in Figure 4.3.

OPCODE OPI OP2 OP3

FIGURE 4.3

These operands, in general specify addressing modes. For

example, the following symbols can be used for operand one

* depending upon the particular instruction desired.

m -local memory specifier
1 -> MA

S.:.2 - MB
3 MR
4 - MS

v :- an immediate value

c :a a count

I :- an index, or inmediate value

p :- a specific processing element

k :- # of column values for matrix multiplication

II

Page 50

IA := index for MA

t :- trace level i
0 -> no trace
1 -> processor state only
2 -> full processor state

Symbols for operand two are similar to those of operand one.

However, all symbols used in operand one are not used in operand

two. A listing of these operands follow.

i :- index or inmnediate value I
v:- an imnediate value

c :- a count

p :- PE number

m :- column dimension of a matrix

IB :- index for MB

There is only one specified symbol for operand three. Despite

this fact, an operand must be supplied in each field for each

instruction that is to be executed. For that reason, zeros must

be supplied in a particular field when no opcode is required.

The defined symbol for operand three follows.

,. m :- column dimension of a matrix

Consider, for example, the instruction, 12 2 2 0. This

instruction says to allocate two spaces in local memory B.[Operands two and three correspond to m and c, and operand three

r, is a zero because it is not needed. The programmer is referred

to Appendix A, more specifically to pages A-l0 through A-14, and

A-16, for the correct placement of these symbols in a specific

instruction.

Page 51

The emulator has the capability of performing both vector

and scalar operations. Vector operations are those that involve

streaming data to one processor (serially), then to the next, and

so on. Scalar operations involve interleaving or performing

operations concurrently on all processors simultaneously. Upon

examining the instruction set of the MJHI, the user will be able

to distinguish the vector instructions from the scalar

instructions by their groupings.

,L

"0

* , -..-

Page 52

4.3.1.3 DATA TYPES

A listing of the various types of data used in the emulator

are show.n in Table 4.3. These "type" statements are similar to

* the declaration statements used in Fortran.

TABLE 4.3

DATA TYPES

dataval =integer; (Data Type of array
matrixdim - 31; {Max rows /cols
mat rix -a rray [mat r ixdim~ma t r iidim]

of dataval;
(data values.

PEmask - record {Bit string indicating
bit: array[0. .NPM1] active PEs.

of boolean;
end;

maskstack - array[l. .10] Stack of active PE masks. 1
of PEmask;

maskstr - arrayfo. .NPM1] String version of PE mask. I
* - of char;

statusword - array[0..3] (4-bit Status word. I
of boolean; (See Below.

{bit zero: I- enabled/noncompletion.
{bits 1-2: 00 n o exception.
{ 01 arithmetic exception:)
{ bit 3: 0 - zero divide;

(10 -machine exception.
{11 -operand addressing exception.
{bit 3: 0 -address range;

statustr -array(0..3] (String version of status word.)
of char;

datarnem -array[0. .MENMAX] (local A,B,R memories.I
of dataval;

shiftmem -array[o. .SHREGMAX] (Shift register memory.)
of dataval;Li cpmem - array[O. .CPMEMMAX] The Central Memory.)
of dataval;

instruction- record
opcode:integer; (Operation code.

opl:integer; (First operand.
(p:ntgr Second operand.

op:ite{r Third operand.,

opcodeset s et of 0. .CPHALT; (Valid processor

opcodes.)

Page 53

processor - record

PROCID:integer; { Procesor ID. I
ACC:dataval; { Accumulator. }
MAR:integer; { Memory address reg. }

{ Processor ID for shifting. I
FCSID:integer; { Forward circular.
BCSID:integer; { Backward circular. 1

* PSSID:integer; { Perfect Shuffle. }

{ Local Memories. }
MA:datamem; { A-operand Memory. }
MB:datamem; { B-operand Memory. }
MR:datamem; { Result Memory. }
MS:shiftmem; { Shift registers. }
SPORT:shiftmem; { Inter-processor shift I

{ port.

{ Base Registers for Local Mem's)
MAB:integer; (Base register for MA.)

4 MBB:integer; { Base register for MB.)
MRB:integer; { Base register for MR.)

{ Current Bounds-Reg for LM's. I
MAH:integer; { Hi in-use MA address. 1
MBH:integer; { Hi in-use MB address. I
MRH:integer; { Hi in-use MR address.

STATUS:statusword; { condition code bits.

end; { processor record. }

p 4.3.1.4 REQUIRED VARIABLES

Table 4.4 contains a listing of the variables required to

run the emulator. Some of these variables must be supplied by

the programner. These variables are the four files: code,

operand, trace, and result; the number of processors in the

-- multiprocessing configuration, and the level of trace desired.

IThe other variables listed, unless contained in the files

supplied by the user are generated by the emulator. These

entities will be further discussed later.
L

i

.

Page 54

TABLE 4.4

REQUIRED VARIABLES

codefile:text; { File containing MJHI code along I
{ with immediate data. }

oprndfile:text; (File containing matrix values.
tracefile:text; { File to contain full processor }

{ execution trace. }
resultfile:text; { File to contain "result" (i.e.. I

{ data transmitted by "SEND" }
•{ instructions. }

TRACE:integer; { Trace enable flag. }

IR:instruction; { Broadcasted instr. register.)
PE: array[O. .NPMI] (The MJHI network of PE's.

of processor;
NP:integer; { Number of processors in use.)
NAP:integer; { Number of currently active PEs. }
A,B,R:matrix; {Operand and result matrices }

[* ACM:cpmem; { The CP Central Memory. }
O.4HI:integer; {Highest in-use CM address. }
ACTIVEMASK:PEmask; { Current active processor mask.
MSTACK:maskstack; { Stack of active PE masks. }
MSTKTOP:integer; { Stack pointer for MSTACK. 1
CXOMPLETED:boolean; { Flag set when active PEs }

{ complete instruction. }
PEOPCODES:opcodeset. (Set of valid PE opcodes. }
CPOPCODES:opcodeset; { Set of valid CP opcodes. }
i:integer; (Work variable. }
P: INTEGER;

,p 4.3.1.5 PROCESSOR MDDULE

This module is analogous to the control processor of the

* multiprocessor architecture in that it is the heart of the

emulator. Like the controller, the processor module is

responsible for clearing all processor memories and identifying

",ev all shift neighbors for each processing element configured in the

multiprocessing network. Along with this initialization, this

module also performs all instruction execution. That includes

the I/O scheme, also, since there are specific instructions for

reading and writing data among processors, central memory, and

the outside world. This function is also compatible with that of

I -_

Page 55

the controller, in that the controller is responsible for all

data I/O.

Instruction execution proceeds as follows. Upon

initialization, the memory address register (MAR) of the

* . controller is set to a negative one (-1). This is done so that

once the MAR is incremented, it will point to the current

" - instruction. The MAR is incremented at the end of each

instruction decode and execution cycle. The current instruction

is fetched, and then compared first to the Processing Element

opcodes, and then to the Control Processor opcode, in the event

4that the instruction was not a PE opcode. Once a match has been

. - made and the appropriate instruction has been identified, then it

... is decoded as per the detailed lines of code included in the

emulator. The MAR is incremented and the next instruction is

fetched, decoded, and executed. This process continues until a

CPHalt instruction is issued.

Major sections of Pascal code from the processor module

perform the initialization of processors, instruction decoding,

4" and processing dumping. The relevant procedures, as they are

.- called in Pascal, are named appropriately, and can be further

S-studied in Appendix A. A basic flow chart of the overall

processor module is included in Figure 4.4. The actual

procedures are included in Appendix A, where the entire emulator

is located.

I

Page 56

Init ialize Processors

Dump Control Processor State

YE S

63

Page 57

3 2

Execute PE Execute CP

Fetchcio Ihnsx istutrucio

ra e >

IN

dYES

Wrt oTaefl

Fec h et ntuto

FIGURE 4.4

FLOW CHART OF PROCESSOR Pf)DULE

Page 58

With each instruction fetch (Ifetch), pertinent information

is written into the trace file by the processor module if the

level of trace is greater than 1. This trace file will prove

invaluable as the complexity of the functions performed by the

emulator increases.

4.3.2 PROGRAMMING THE MJHI

Before invoking the emulator and successfully performing

various matrix operations, the user must first become familiar

with specifics of the emulator itself. Following are details of

the emulator that should aid the progranmmer/user in obtaining

favorable results.

There are four files that must be assigned to the MJHI

before a successful run can be made. These files are the operand

- file, code file, trace file, and the result file. The first two

' are input files that must be created prior to runtime, while the

latter two are output files that are generated by the emulator

itself.

*4 4.3.2.1 OPERAND FILE

The operand file, oprndfile, is the file which contains the

two operand matrices A and B. In this thesis, matrix

multiplication will be looked at exclusively. Thus, the

dimensions of A must be M by N, while matrix B must be N by P,

yielding a result matrix with the dimensions M by P. A sample

operand file follows.

I - ' -

Page 59

"-" 8

N Matrix A (4 x 1
4

2

10 20 Matrix B (I x 2)

Notice how the data file (whose extension is .mtx) is written in

matrix form.

4.3.2.2 CODE FILE

The code file contains the instructions to be executed by

the emulator. As stated before, there are two types of

instructions, Processing Element (PE) instructions and Control

Processor (CP) instructions. Two instruction sets are necessary

due to the nature of the multiprocessor architecture that is

•. , j being emulated. A listing of the MJHI instruction set is shown

in Table 4.2.

The instruction format of the emulator is shown in Figure

4.3. The programmer must always supply three operands with an

opcode. This is true even if all three fields are not being

used. In this case, zeros must be supplied in the appropriate

operand field. In general, the PE opcodes contain only 2 digits,

e while CP opcodes contain 3 digits. Operands 1 and 2 generally

,.~specify the source of data, while operand 3 specifies its

destination after some operation has been performed. In the

emulator, however, required operands are coded as follows:

Page 60

m :- local memory specifier
I -> MA
2 ->MB

3 ->MR
4 -> MS

v :- an immediate value

C a count

i:- an index, or immediate value

IA, IB, IR :- indices for MA, MB, MR. respectively

In order to enable processors, the ENABLE insruction must be

used. Operand one of this instruction is the decimal equivalent

of the binary string of processors comprising the system. A 'I'

indicates that a certain processor is turned on, or enabled,

while a '0' indicates that a certain processor is turned off. In

this binary string of processors, the most significant bit

represents processing element 0 while the least significant bit

represents the highest numbered PE in the configuration For

example, if two PE's comprise a system, then

100 2 0 0

means to enable PE 0 only, while

100 3 0 0

means to enable all processors. Remember that the binary

representation of 2 is 10, and the binary representation of 3 is
11.

4.3.2.3 TRACE FILE

The trace file is a file that contains a detailed account of

all activity within the emulator on each clock cycle. There are

varying levels of tracing available:

Page 61

1) no trace
2) processor state only
3) full processor trace

. Level 0 is the lowest, simplest level of trace, while level 2 is

the most comprehensive trace level. Although the full trace is

p lengthy and consumes a significant amount of space, it is a major

feature of the emulator, in that it allows one to see what

- happens to every active processor during each clock cycle. In

case of an erroneous result, the source can easily be traced.

4.3.2.4 RESULT FILE

E The result file contains the operand matrices along with the

result file that is created by the MJH1 after simulation.

4.4 FILE NAMING CONVENTIONS

Following is a table that describes the way that files

should be named, Table 4.5.

4..

1 @

/..

JO

Page 62

TABLE 4.5

FILE NAMING CONVENTIONS

EXTENSION DESCRIPTION

.mtx Operand file containing two matrices A & B.
Prefix of filename should specify dimensions
or algorithm with which it is to be used.
eg., MEQKNP4, a file containing 2 matrices with
M equal to number of processors (K). and PE - 4.

.cod Code file that is read as input by the emulator.
Note that the code must be in absolute form--
no symbolic coding is allowed.

.trc Trace file that is created while the emulator
is executing instructions. The trace level
(0,1,2), which determines the volume of trace
output, can be set at the start of execution
by the user, or it can be set by the programmer
using the SETT instruction.

.res Result file that is created by MJHI. This file
contains both operand matrices, followed by the
result matrix.

4.5 CREATING THE CODE FILE

This is perhaps the most important file that must be

submitted to the MJHI. This is the file that performs the matrix

partitioning based on the partitioning algorithms of Chapter

Three. This file can be easily generated by hand, although the

programmer must be familiar with the assembly code that is

specific to the MJH1. Thus, some background in assembly language

programming, i.e. microprogramming, is very helpful in the

progranmiing of this machine.

Before the code can be written, however, the programmer must

know several "design" parameters. They are as follows. He must

know the number of processors that will be active in the

configuration and he must also know the dimensions of the operand

I

Page 63

S. matrices. From this basic information, the correct partitioning

algorithm can be chosen for the most efficient allocation of

values to the active processors.

The code file contains three sections as shown in Figure

5 4.5. The first section involves allocating space in central

memory for three matrices: matrix A, matrix B, and matrix R.

The second section defines the partitioning of the operand

matrices. The third and final section of the code file performs

matrix multiplication (or whatever matrix operation desired), and

-- writes the result matrix back to central memory. A sample code

file with comments follows in Figure 4.6. This sample is an

implementation of partitioning algorithm for matrix

multiplication when the number of rows, mis a multiple of the

-. number of active processors. This is the algorithm numbered 3b

.- which can be referenced in Chapter Three, Section Three under the

same, 3b. Note that the first instruction is a no-op whose

p comment statement describes the way in which each martix is

- partitioned and distributed among each active processor.

,, -.

0

II

Page 64

Memo ry

Allocation

Sect ion

Partitioning

Sect ion

Ma tr ix

Computation

Sect ion

FIGURE 4.5

SECTIONS OF THE CODE FILE

* N Page 651

FIGURE 4.6

SAMPLE CODE FILE

ALG3B: 4 x 1 BY 1 x 2; NP-2. (M4ULTK]

0 0 0 0 (rn/k) rows of [A] and entire [B]
120 16 0 0 Clear 16 words in CM~
110 0 4 1 Read matrix A (!MUt3RY
111 0 4 1 EchoA ALLOCTION]
110 4 1 2 Read matrix B and echo
111 4 1 2 Echo B

0 0 0 0 Start partitioning
100 3 0 0 Enable ALL PE's to load B
15 4 0 0 PEs at B[1,11
12 2 2 0 Allocate space in MB for 2 values
20 2 2 0 Move 2 values into MB
100 2 0 0 Enable PE 0

*15 0 0 0 Set address to A[1,1]
.a100 1 0 0 Enable PE 1 [PARTITIONING]

15 2 0 0 Set address to A[3.1]
100 3 0 0 Enable ALL PEs
103 3 0 0 Start TRACE
12 1 2 0 Allocate space for A
20 1 2 0 Load various rows into MA
0 0 00 Prepare to multiply

11 1 0 0 Set MA to 0
11 2 0 0 Set MBtoO0
11 3 0 0 Set MRtoO0
12 3 4 0 Allocate room in MR for 2 values

65 0 1 0 Multiply
11 1 0 0 Reset B
11 2 1 0
65 1 1 0

A11 1 1 0
11 2 0 0
65 2 1 0
11 1 1 0
11 2 1 0
65 3 1 0 (MATRIX
100 2 0 0 Enable P0 OXMUTAT ION)

15 6 0 0 Set MAR to 1st result
100 1 0 0 Enable PI
15 10 0 0 Set MAR to 2nd result
100 3 0 0 Enable ALL PEs
11 3 0 0
21 4 0 0 Store lit results

111 6 4 2 PRINT
103 0 0 0 STOP TRACE.
255 0 0 0 CPH-ALT

1' 0 , 1 Af

Page 66

Note that special care must be taken when writing the result

matrix back to the central memory. The MJHI architecture is

defined such that data is read and stored in a linear,

one-dimensional array. In other words, each data word is stored

in sequential memory locations. Also, matrices are read in row

order. If matrix A contained two rows and three columns, it

would be read into central memory by rOWS. The first element of

row I would be followed by the second element of row 1, etc.,

until the third element of row 2 was read (matrix A has the

dimensions of 2 by 3). Thus, after the operations have been

*performed by all active PE's, the programner must be aware of

which processor computed what result, then make sure that the

result is written back to the proper location in central memory.

After the code file has been created in accordance to the

particular algorithm, the MJHI may be invoked, thereby testing

the correctness of the partitioning algorithm, and of the code

file created by the programmer. Remember that the burden of

progranining to exploit the inherent parallelism in such an

environment is placed solely on the programmer. Thus, the

correctness of the codefile determines the correctness of the

simulation.

4.6 RUNNING THE MJHI

The MJHI emulator is very easy to operate. The

user/prograniner must first have access to an account on the VAX

11/780. In order to obtain an account, see the system operator.

After one has an account and has successfully logged onto the

'U'

Page 67

system, the emulator must be made accessible to the user's

account. This can be done by setting the default to the

residence of the emulator as follows:

SET DEF [HUGHES.EMULATOR]

This command allows the programmer access to the MJH1, and to

previously created files relative to the operation of the

emulator. The user should feel free to explore and examine the

existing files by typing them out onto the terminal. This will

further familiarize the user with the machine and its operation.

The command: RUN MJH1EM invokes the emulator. Note that all

files being run on or sent to the emulator should reside in

[HUGHES.EMULATOR]. Therefore, the user must either create both

the operand file and code file in that directory, or must copy

g them over to [HUGHES.EMULATOR] before invoking the emulator.

The emulator will prompt the user for the various filenames,

the number of active procesors, and for the level of tracing as

Sf o 11 ows:

ENTER NAME OF OPERAND FILE

ENTER NAME OF CODE FILE

* ENTER NAME OF RESULT FILE

ENTER NAME OF TRACE FILE

ENTER NUMBER OF PROCESSORS

ENTER PROCESSING TRACING LEVEL
*" 0) NO TRACE

1) PROCESSOR STATE ONLY
2) FULL PROCESSOR TRACE

After these parameters have been entered, the emulator goes to

work and executes each instruction. In other words, it does

1q w. Ir I " 'r\~'

Page 68

exactly what it is programmed to do. When the CPHalt command has

been executed, the emulator stops, and the message

MJHI SHLT-D !

is displayed on the screen. To see what has just transpired, the

result file and the trace file should be either typed or printed.

Upon examination of these files, one will be able to tell if the

run was successful or not.

A demonstration of the M79I Emulator is found in Appendix C.

Algorithm 3B of Chapter Three is implemented here, the same

algorithm that is used in Figure 4.6. This demonstration

includes a sample operand file, code file, result file, and trace
-- file.

f i

'4

" 1

-

Page 69

"CHAPTER FIVE

SU RY AND SUGGESTIONS

2 '5.0 SUMMARY

. In summation, the MJHI is a very good software tool to use

in the analysis of the correctness of various partitioning

algorithms. It has the potential to be a forerunner in the

discipline of Computer Engineering at North Carolina A & T State

University. This is possible because the emulator is easily

*- . adaptable to fit system architectures other than SIMD. Through

simulation, different architectures can be implemented, as well

as various elgorithms for exclusive partitioning of matrices to

perform simple matrix operations in a parallel or multiprocessor

environment.

The MJHI Emulator has the potential to be expanded

tremendously. The instruction set could grow immensely. Also,

.I the emulator could be made into a smarter, more intelligent

-" machine by combining some existing commands and making its

language of a higher level.
4 1.

5.1 SUGGESTIONS

Suggestions for future work include devising a way to

generate code necessary for the operation of the MJHI in a

systematic, automatic fashion. Upon careful examination of all

*existing code files, one can see the existence of a pattern. Due

* to time constraints, the author did not have time to decipher the

pattern, however, she acknowledges the fact that a pattern does

N N. N ,

[.'' a

71- - -- - - -

Page 70

exist. Thus, a code generator should be looked into in order to

make the MJHI a more attractive entity. The progranxner can see,

by examining some of the existing codes, that progranmning the

MJHI by hand can be excrutiatingly long and frustrating.

Also, the algorithms for matrix inversion should be looked

into and possibly implemented on the emulator. After these two

Nfeats have been successfully accomplished, the author feels that

the emulator should be expanded to be able to handle more PE's. I
Currently, the maximum number of PEs in a system configuration is

only eight. However, before adding more PEs in the

-. configuration, the controller should be expanded to include error

detection and/or error correction.

1.J

Page 71

S BI BL I OGRAPHY

I. Rodrigue, Garry, Parallel Computations, Academic
Press, 1982, pp I - 49.

2. Sadhasivan, S., "Multiprocessing Configuration for Matrix
Computations," Thesis, North Carolina A. & T. State
University, 1984.

3. Martin, Sr., Harold L., and Jones, Ed, "Analysis of
S',Parallel Matrix Computations on an Emulated Multiprocessor-

Based SIMD Multiprocessor," Report, North Carolina A. & T.
State University, August 1985.

4. Dertougas, M. L., "The Multiprocessor Revolution:
Harnessing Computers Together," Technology Review, Vol.
89, Feb/March 1986, pp 44 - 54.

5. Deposito, J.,"Working Faster Together," Computers and
S.Electronics, Vol. 22, May 1984, pp 73 - 74.

6. Port, 0. "Superfast Computers: You Ain't Seen Nothin'
Yet," Business Week, August 26. 1985, pp 91-92.

7. Stone, H. S., "Parallel Computers," Introduction to
Computer Architecture, Science Research Associates,

" -Chicago, 1975, pp 318 - 374.

8. Browne, J., C., "Parallel Architectures for Computer
, Systems," Physics Today, Vol. 37, May 1984, pp 28 - 35.

S"9. Feng, Tse-yun, "A Survey of Interconnection Networks,"
" ~Computer, December 1981, pp 12 - 27.

10. Martin, Sr., Harold L. and Sadhasivan, S., "A Parallel
MIMD Machine for Matrix Computations," Proc. of the

Sixteenth Southeastern Symp. on System Theoty, March 1984,
pp 58 - 61.

11. Martin, Sr., Harold L. and Sadhasivan, S.,"Partitioning
Algorithms for Matrix Computations in a Multiprocessing
Environment," Proc. of the Third International Conference
on Systems Engineering, Sept. 1984, pp 287 294.

.-

Page 72

12. Martin, Sr., Harold L. and Sadhasivan, S., "mAn Array
Processor for Matrix Computations," Proc. of the Eighteenth
Annual Auilomer Conference on Circuits, Systems, and

Computers, Nov. 1984.

13. Hayes, John P., Computer Architecture and Organization,
* .McGraw-Hill, Inc., 1978, pp 160 -171.

$.i.APPENDIX A

71 PROGRAM LISTING OF THE MJH1 EMULATOR

p ro g ram
MJHl(input,output,codefile~oprndfile~tracefile,reSUltfile);

(INCLUDE MJH1.VAR

(Declaration of Mi-I Arithmetic Processor State Register.)

(Global Constants: These define the actual configuration '

c o ns t

MAXONP - 8 ;{Max Number of arithmetic Processors.
NPMl - 7; {Number of processors minus one.
MEMIA. - 256; 1Size of each AP local memory.

I CPMEMMAX - 2048; {Size of central memory (CM4).
SHREGMAX - 1; 1Size of shift-register memory.
MAX.DATAVAL - 25600; 1Hypothetical overflow value.

zeroval - 0; {Constant for integer data type.
trueval - '1'; 1Char representation of logical "trTU e"
falseval - '0'; {Char repr'n of logical "false".}

(PE INSTRUCTION SET MNEMOUNICS AND) OPCODES.

IMISCELLANEOUS INSTRUCTIONS.

0: NOOP -0; {No Op: Allows documentation of code. I

IADDRESSING INSTRUCTIONS.I
ADBASE 10; 1Advance LM base register.
SETH - 11; 1Set LM base register to vector origin.)
ALLOC -12; (Allocate C More words in LM.
SETMA -15; 1Set MAR to address in CM4.
ADA-16, Advance MAR by specified value.

CMQi ACCESS and SHIFT INSTRUCTIONS.I
LOAIXIA 20; (Load into LM from CM.

0em

Page A-2

STORC0 - 21; { Store into CM from LM. }
FCSHF - 22; { Forward circular shift. }
BCSHF - 23; { Backward circular shift.)
PSSHF - 24; { Perfect shuffle shift. I
SHFIN - 25; { Receive shifted data. }
SHIFX - 26; { Put data on shift port. I

{ DATA MOVEMENT INSTRUCTIONS. I I
MNVA - 30; { Move data to MA from another LM.)
MOVB - 31; { Move data to MB from another LM. }
-MO\ = 32; { Move data to MR from another LM. }

MOVS - 33; { Move data to MS from another LM. }

SCALAR ARITHMETIC INSTRUCTIONS. }
SADD = 40; { Add scalar values in MA and MB. }
SSUB - 41; Subtract scalar values in MA and MB. }
SMPY - 42; { Multiply scalar values in MA and MB.
SDIV - 43; { Divide scalar values in MA and MB. } ,
SMSA - 44; { Add MS[i] to a LM.

{ VECTOR-SCALAR ARITHMETIC INSTRUCTIONS. I
{ NOTE: Vector in MA, Scalar in MB. I

VSADD - 50; { Add scalar to vector. I
VSSUB - 51; { Subtract scalar from vector. }
VSMPY - 52; { Multiply vector by scalar. }
VSDIV - 53; { Divide vector by scalar. }

{ VECTOR-VECTOR ARITHMETIC INSTRUCTIONS. I
PVADD - 60; { Pair-wise vector addition. }
PVSUB - 61; { Pair-wise vector subtraction. }
PVPY - 62; { Pair-wise vector multiplication. I
INPRD - 65; { Vector inner product. "

{ STATUS-CHECKING INSTRUCTIONS.)
TST - 70; { Test statusword for error condition.

(* CP INSTRUCTION SET MNENDNICS AND OPCODES. a)

{ TNROL INSTRUCTIONS. I
ENABLE 100; { Enable processors specified by mask.

PUSHM - 101; { Push current active mask onto MSTACK.

4 PULLM - 102; { Restore (pull) mask from MSTACK.

SETT- 103; { Set MJHI TRACE level.

CPHALT - 255; { Shut down Control Processor.

|I
I/O INSTRUCTIONS.

MREAD - 110; (Read M x N matrix into CM.
I 14.MRE4DB - 113; { READ M • N matrix [B] into 04'

i

Page A-3

NMRITE -111; {Write M x N matrix stored in CM.

{DATA MANAGEMENT INSTRUCTIONS. ------
SETV =120; {Set range of CMA locations to value.

type

dataval - integer; {Data Type of array

matrixdim - 0.-31; {Max rows /cols

matrix - array[matr ixdim,mat rixdim)

of dataval;

{ data values.
PEmask - record {Bit string indicating

bit: array[0. .NPM1] { active PEs.
of boolean;

end;
maskstack -array[l. .10) (Stack of active PE masks.

of PEmask;
maskstr - array[0. .NPMII { String version of PE mask.

of char;

statusword - array[0. .31 {4-bit Status word.
of boolean; {See Below.I

{bit zero: 1I enabled/noncompletion.
bits 1-2: 00 -no exception.

{ 01- arithmetic exception:
{ bit 3: 0 - zero divide;

{ 10 -machine exception.
{ 11- operand addressing exception.
{bit 3: 0 -address range;

statustr - array[0..3] I String version of status word.)
of char;

datamem - arraylO. ME1%u4X) { local A,B,R memories.
of dataval;

shiftmem - array[0..SHREGMAX] { Shift register memory.)
of dataval;

cpmem - array[0. .CPMEMvIAX] The Central Memory.
of dataval;

instruction -record

opcode:integer; (Operation code.)
opl:integer; (First operand.)
op2:integer; {Second operand.
op3:integer; (Third operand.

end;

bL~~k''"C _ "k - 9R7.. - T.-- T I -yV r9 .- V 9' V V' . v- w-'-,--r-' y' xV vnrww-'--

Page A-4

opcodeset - set of O..CPHALT; {Valid processor opcodes.

processor - record
PROCID:integer; {Procesor ID. I
ACC:dataval; (Accumulator. I
MAR:integer; {Memory address reg.

{Processor ID for shifting. I
FCSID:Integer; (Forward circular. I
BCSID:integer; {Backward circular.
PSSID:integer; (Perfect Shuffle. I

Local Memories.I
MA:datamem; (A-operand Memory. I
MB:datamem; (B-operand Memory. I
MR:datamem; (Result Memory.
MS:shiftmem; {Shift registers.

N.SPORT:shiftmem; {inter-processor shift}
port.I

(Base Registers for Local Mem's)
MAB:integer; {Base register for MA. I
MBB: integer: Base register for MB.
MRB:integer; (Base register for MR. I

{Current Bounds-Reg for LM's. I
MA.H:integer; (Hi in-use MA address.
MBH:integer; (Hi in-use MB address.)
MRH:integer; {Hi in-use MR address.I

STATUS:statusword; (condition code bits.

end; (processor record.

* (INCLUDE MJH1.PECI
(ss *R* REQ U IR E D V A R IA B L ES *S

0 var
codefile:text; (File containing MJHi code along

{ with immediate data.
oprndfile:tezt; (File containing matrix values.
tracefile:text; (File to contain full processor

4 execution trace.
resultfile:text; (File to contain "result" (i.e.,)

4 data transmitted by "SEND"
4 instructions.

TR.ACE:integer; (Trace enable flag.)

0Oa ,A~ 1111,0

Page A-5

IR:instruction; { Broadcasted instr. register.
PE: array[O..NPMl] { The MJH1 network of PE's.

of processor;

NP:integer; { Number of processors in use. }
.- NAP:integer; { Number of currently active PEs. }

A,B,R:matrix; { Operand and result matrices }

CM:cpmem; { The CP Central Memory. }
(141HIl:integer; { Highest in-use (M address }

ACT IVEMASK:PEmask; { Current active processor mask. }
MSTACK:maskstack; { Stack of active PE masks. }
MSTKTOP:integer; { Stack pointer for MSTACK. I
COMPLETED:boolean; { Flag set when active PEs }

"{ complete instruction. }

PEOPCODES:opcodeset; { Set of valid PE opcodes.
CPOPCODES:opcodeset; { Set of valid CP opcodes.

i:integer; { Work variable.
P: I NTEGER;

(* Processor Module: Contains code for executing the instruction
*s)

Set, processor initialization, processor-state dumping.
-,*)

(* Initialize processor registers. *)
procedure initprocessor(var
PE:processor;pidfcs,bcs,pss:integer);

var i:integer; {Work variable. }

begin (initprocessor }

with PE do
' .. begin

* , PROCID :- pid; ACC :- zeroval; MAR :- -1;
FCSID :- fcs; BCSID :- bcs; PSSID :- pss;
MAB :0 0; MBB :- 0: MRB :- 0;
MAll :0 0; MBH :0 0; MRH :- 0;

for i :- 0 to MEMMAX-1 do
begin

MAli] zeroval; MB[i] :- zeroval; MR[i] :- zeroval;
end;

L- -. % . • -. . . .% . . -. . % ".- * .-.-. ., -.- € , .

Page A-6

for i :-0 to SHREGMAX-l do
begin

MS[iI :- zeroval; SPORT[i] :=zeroval;

end;

for i :- 0 to 3 do STATUSII] :-false;

end; { with PE}

end; {initprocessor}

(Convert 4-bit status vector into character array. 5

procedure convertstatus2str(var S:statusword;var C:statustr);

var i:integer; {Work variable.)

beg in
for i :- 0 to 3 do

if Sb]l
then C[i] :-trueval

else Chi : falseval;
end; (convertstatus2str

(Convert processor mask into character array. 5

procedure convertmask2str(NP:integer; var MASK:PEmask;
var MSTR:maskstr);

var i:integer; {Work variable.

b eg in
for i :- 0 to NP-i do

if MASK.bitli]
then MSTRi] :-trueval

else MSTR[i] :-falseval;

end; { convertmask2str

(Dump the Control Processor State.)
procedure DumpCPState(NPNAP,TRACE:integer; var

* ACTIVEMASK:PEmask);

var
* i:integer; {Work variable.

mstr:maskstr; {String version of ACTIVEMASK.

nvals:integer; {vals on current line: skip
when)I

{ 12.

beg in

convertmask2str(NP.ACTIVEMASK,mstr);

I4

Page A-7

wr i teIn (tr a c ef ile)
write(tracefile,'CP STATE--' ,'TRACE -',TRACE:2,

NP -',NP:3,' NAP -',NAP:3,
ACTIVEMASK =)

for i :-0 to NP-i do
wr it e (t race f iie,ms t r[ii: 2)

* writeln(tracefile);

if TRACE > 0 then
begin

nvals :- 0;
wr i te (trace file ,' DUMP OF CM4:,

QvlHl:4,' WIORDS IN USE.');
writeln (trace file);
for i :- 0 to C1MHI do
b eg i n

if nvals - 12 then
beg in

writeln(tracefile, ' ':8);
nvals :- 0;

end;
write (trace file ,C4[ii:6);
nvalIs :-nvals + 1;

end;
end;

INend; { DumpCPState

-:(*Dump the processor state record. *

procedure duxprocstate(var PE:processor);

var ST:statustr; (Work array for displaying Status bits.

begin { dumprocatate

WITH PE do
b eg i n

convertstatus2str(STATUS,ST);

wr i t eln Ct ra c ef ile)
2 writeln(tracefile.' ID ACC MAR FC BC PS MS SP',

KtAB MBB MRB MAH MBH MRH STATUS');
'U wri teln(tracefi le ,PROCID:3,ACC:4,MAR:4,

* FCSID: 3,BCSID:3,PSSID: 3,
MS[0] :4,SPORT(O] :4,
MAB:4,MBB:4,MRB:4,MAH:4,MBH:4,MRH:4,
ST(O]:3,ST[1]:2,ST[2]:2,ST[3]:2);

wr i t eln Ct rac ef ile);

hi end; (WITH PE)

end; {dumprocstate)

(Dump the specified local memory a

Page A-8

procedure dumplocalmem(MENfrYPE:char ;var
ME!M:datamem;MEMHI integer);

var i:integer; f{Work variable.)

begin { dumplocalmem)

writeln(tracefile);

case MEMTYPE of

WA: write(tracefile, 'DUIP OF MA:');

ON ~'B': write(tracefile,'DUlP OF MB:');

'R' : write(tracefile,'DUMP OF MR: ');

end; I case ofNMENMPE

writeln(tracefileMD&HI:4,' VRDS IN USE.');
writeln(tracefile);
for i :-0 to MEMHI-I do

wri te(tracefi le ,MEM[i]:4);

end; {dumplocalmem

(Dump processor state and memory. 5

* procedure dumprocessor(var PE:processor;TRACE:integer);

begin

if TRACE >- I

then dumprocstate(PE);

if TRACE >- 2 then
with PE do
begin

dumplocalmem('A' ,MA,MAH);
dumplocalmem('B' ,MB,MBH);

0 duinplocalmem('R' ,MR,MR.H);
end;

end; (dumprocessorI

(Shift value V into I'th position in processor number P.)
procedure shift(PI :integer; V:dataval);

a- begin

A with PE[P] do
SPORT[IJ : V;

end; (shift

'A,

Page A-9

(Fetch the next instruction from the Instruction Stream.)
procedure Ifetch(Var IR:instruction);

write(output. ' IR>')
with IR do
be g in

readln(codefile,opcode~opl,op2,op3);
if TRACE >- 0 then

b eg i n
writeln(output,opcode:2,opl:3,op2:3,op3:3);
wrijt el1n (t ra c ef ile)
writeln(tracefile, ' IR>

opcode :2, op1 :3, op2 :3, op3 :3);
end;

end;
end; (Ifetch}

(Execute the current instruction on processor PE. 5

procedure PEexecute(var IR:instruction; var PE:processor);

v ar
i:integer; (Local work variable.
error:boolean; {Error flag.

a (Move C data values starting at SM[SB] to Th4[TB]. *
procedure movedata(C: integer;

var SM:datamem;SB: integer;
var TM:datamem;TB: integer);

var i :integer; {Work variable.

begin {movedata}

for i :- 0 to C-1 do
TM[TB+i] : SM[SB+i];

end; {movedata

(Mcve C data values from MS into TM Starting at TB. S

procedure movefronmAS(C:integer; var MS:shiftmem;

var TM:datamem; TB:integer);
var i : integer;

begin {movefromMS
f for i :- 0 to C-i do

Th [TB+i] :- MS[i];
end; {movefrozdAS

(Move C data values into MS from SM, starting at SB. *
procedure movetoMS(C:integer; var MS:shiftmem;

var SM:datamem; SB:integer);
var i :integer;

-w S - - . 'S~ V-V

Page A-10

begin
for 1 : 0 to C-1 do

MSi) :- SMISB+i);
end; {move toMS}

begin {PEexecute}

error :- false:

WITH PE do
BEGIN

STATUS[11 :-false; STATUS[21 :-false; STATUSD3 : false;

case IR.opcode of

00: { NOOP I
begin
end;

* 10: (ADBASE m,i
begin

if IR.opl I then MAR : MAR + IR.op2I
else if IR.opl - 2 then MBB -MIBB + IR.op2
else if IR.opl - 3 then MRB :- MP + IR.op2;

end;

11: (SETB m,v}
begin

if IR.opl - I then MARB :- IR.op2
else if IR.opl - 2 then MBB :-IR.op2

else if IR.opl - 3 then MRB :-IR-op2;

end;I

12: (ALLOC m,c)
begin

if IR.opl I then
MAH :- MAH + IR.op2

* else if 1R.opl 2 then

M[BH :- M[BH + IR.op2

else if IR.opl - 3 then

'6 15: { SETMA n;MH :-MRH + IR.op2;I

* begin
edMAR :-IR.opl;I

16: { AIRAA v)
begin

MAR :- MAR + IR.opl;
end;

20: f LOADQM m~c)

..... ...

Page A-11

if IR.opl I then
for i:- 0 to IR.op2-1 do

MAIIMAB+i] :- QAIIMAR+i]

else if IR.opl - 2 then
for i :- 0 to IR.op2-1 do

MB[MBB+i] :- CM[MAR+iI;
end;

21: (STORal c}
b eg i n

for i :- 0 to IR-opl-1 do
QM[MAR+ i W- M[MRB+ i]

end;

- 22: { FCSHF c
be g in

for i :-0 to IR-opl-1 do
shi ft(FCSID, i,MS[i])

end;

23: f BCSHF c}
beg in

for i :- 0 to IR.opl-l do
shi ft(BCSID, i,MS[ii);

end;

24: f PSSHF c}
beg in

for i :-0 to IR.opl-l do
shift(PSSID, i,MS[ii);

* end;

25: { SHFIN c
b eg i n

for i :-0 to JR-opl-1 do
MS[i] :- SPORT~i];

end;

26: { SHIFX c,p)
begin
p :- IR.op2;

for i :- 0 to JR-opl-1 do
sh ift p i ,ms Ei]);

end;

30: (MOVA m,c)
beg in

if IR.opl - 2 then movedata(IR.op2,MBMBB,MA.MAB)
else if IR.opl - 3 then

movedata (JR.op2 .MR,MRB,MA,MAB)
else if IR.opl - 4 then

znovefrozMS(IR.op2,MS.MA.MAB);
end;

Page A-12

31: { ?JVB mn,c
b e gin

if IR.opl I then movedata(IR.op2,MA,MAB,MB,MBB)
else if IR-opl - 3 then

move daa(R o p2 ,MR ,MRB ,MB ,MBB)
else if IR.opl - 4 then

move fTOM"AS(IR op2 ,MS ,MB,MBB);
end ;

32: 1 MOVR m,c
begin

if IR.opl -1I then movedata(IR.op2,MA,MAB,MR,MRB)
else if IR.opl - 2 then

movedata(IR.op2,MB,MBB,MR,MRB)
else if IR.opl - 4 then

move fron1rS(IR.op2,MS,MR,MRB);
end;

33: { N!JVS m,c}
beg in

if IR.opl - 1 then movetoMS(IR.op2.MS,MA,MAB)
else if IR.opl - 2 then zovetoMS(IR.op2,MS,MB,MBB)
else if IR.opl - 3 then

movetoMkS (R. op2 ,MS ,MR .MRB);
end;

40: f SADD IA, IB,IR
b e gin

MR [MRB+IR.op3I : MA [MAB+IR.opl] + MB
[MBB+IR.op2];

end;

41: (SSUB IA,IB,IR
b e gin

MR[MRB+IR.op3I : MA[MAB+IR.opl] -MB[MBB+IR.op2l;

end;

42: (SMIPY IA,IB,IR
b eg in

MR[MRB+IR.op3] : MA[MAB+IR.opl] MB[MBB+IR.op2l;
end;

43: (SDIV IA,IB,IR)
beg in

if MBIIMBB+IR.op2] < zeroval
then MR[MRB+IR.op3] :- MA[MAB+IR.opl]

DIV MB[MBB+IR.op2]
else begin

error :- true; STATUS[1] :- true;
* writeln(output.'ZERO DIVIDE IN

PE- ,PROCID:2);
end;

end;

44: {SMSA)

Page A-13

be g in
if IR.opl -I then

MR[MRB + IR.op3] : MAtMkB + IR.op2] + MS[i]
else if IR.opl - 2 then

MRIIMRB + IR.op3] :- MArMBB + IR.op2] + MS[i]
else if IR.opl - 3 then

MR[MRB + IR.op3] : MA[MRB + IR.op2I + MSI~i]
end;

P :50: { NVSADD i c
beg in

for :- 0 to IR.op2-1 do
MR[MRB+i] :MA[Mk.B+iI + MB[MBB+IR.opl];

end;

51: { VSUB i,c
begin

for i:- 0 to IR.op2 - 1 do
MR[MRB+i) : MA[Mk-B+i] MB[MBB+IR-opl];

end;

5 52: VSMP'i i c

for i:- 0 to IR.op2 - 1 do
MR[MRB+i] : MA[MAB+i] MB[MBB+IR.oplI;

end;

53: { VSDIV i,c}
beg in

if MB[MBB+IR.opl] <> zeroval then
for i :- 0 to IR.op2 - 1 do

MR[MRB+i] :- MAJMAB+i] DIV MB[MBB+IR.opl]
else beginI error :- true; STATUS[1] :- true;

writeln(output,'ZERO DIVIDE IN PE[',
PROCID:1, '1');

end;
end;

60: { VPADD c
begin

for i :- 0 to IR.opl-1 do
MR[MRB+i] : MA[MAB+i] + MB(MBB+i];

end;

61: f VPSUB c

-* for i :- 0 to IR.opl-1 do

en; MR[MRB+i] - Mk[MkB+i] MB[MBB+i]

62: { VPM[PY c)
be g in

f or i :- 0 to IR.opl-1 do
MR(MRB+i] :- MA[MAB+i] MB[MBB+i];

%&MO

mol

Page A-14

end;

65: { INPRD kc},w begin

ACC :- 0;
for i := 0 to IR.op2-1 do

ACC :- ACC + MA[MAB+i] * MB[MBB+i];
MR[MRB+IR.opl] :- ACC;

end;

70: { TST }
begin

STATUS[0] :- STATUS[l] OR STATUS[2] OR STATUSI3];
end;

end; { case }

{ If no error occurred, clear the enable bit to indicate
.{ completion of the instruction execution.

if NOT error then STATUS[0] := false;

END; { WITH PE }

end; { PEexecute I

(S Read M x N matrix into CM4, starting at BASE address.)

procedure readmatrix(BASE,M,N:integer;var Qv:cpmem);

var i,j,k:integer; (Work variables.

begin { readmatrix }

.1 k :- BASE;
for i :- I to M do

for j :- I to N do
beg in

read(oprndfi le ,Q [k]);
A[i,j] :- C14[k];
k :- k + 1;

end;

end; { readmatrix }

procedure Breadmatrix(BASE,M,N:integer;var QA:cpmem);

var ij,k:integer; (Work variables.

begin { Breadmatrix

k :- BASE;
for i :- 1 to M do

for j :-I to N do
begin

0

Page A-1:5

read(oprndfi le ,Q[k);
B[i ,j] := O[k]

end;

end; Breadmatrix}

(Write M i N matrix from CNI starting at BASE address. s

procedure writernatrix(BASE,M,N: integer;var CM:cpmern);

var i ,j,k:integer; {Work variables.

begin { writematrix

writeln(resultfile); writeln(resultfile);
k :- BASE;
for 1 :-i1 to M do
b eg i n

wr i teIn (r e s uIt f iIe)
for j :- 1 to N do

At i , j :_ C2M[k];
write (result file ,A[i , j);
k :- k + 1;

end;
end;
writeln(resultfile); writeln(resultfile);

* . end; writematrix}

I. (S Convert integer-coded mask into boolean-string mask. 5

procedure convertnum2mask(NP,NUM:integer; var MASK:PEmask);

var i:integer; {Work variable.

q,r:integer; (quotient, remainder for conversion algm.

v: integer; (Work variable: successive quotients.

01 v :-NUM,
for i :- NP-i downto 0 do
b eg i n

r :-v ?JD 2;
q :-v DIV 2;
if r - 0

then MASK.bit[iI : false
else MASK-bitfi] : true;

V : q;
end;

end; (convertnum2mask

Page A-16

(*Execute CP Instruction. *
procedure CPExecute(var IR: instruct ion);

var i integer; {Work variable.

begin I CPExecute

case IR.opcode of

100: { ENABLE maskcode}
be g in

convertnum2mask(NPIR.opl,ACTIVEMASK);
end ;

101: (PUSHM}
begin

MSTKTOP :- MSTKTOP + 1;
MSTACK[MSThTOP] : ACrIV?4ASK;

end;

* 102: { PULLM
begin

ACTIVEMASK :-MSTACK[MSTKTOPI;
MSThTOP :- MSTKTOP-1;

end;

103: f SETT tracelevel

TRACE :- IR.opl;
end;

110: f MREAD base,m~n
b e gin

Teadmatrix(IR.opl,IR.op2,4R.op3.OA);
end;

113: (MREADB base,m~n
* begin

Breadmatriz(IR.opl.IR.op2,IRop3.CM).
end;

111: 1 WVRITE base~nm,n

W it emit r 1(1 R opi.I R op2 I R op3,.0M);
* end;

120: 1SET' base *count vii
begin

if IR-opl+IR.op2 > CMU
then 0411 :- IRopl + IR.op2;

for i:- 0 to IR.op2-1 do

end 04R.opl+il :- R.op3.

end; Icase

7 -AI 6541 AN EMULATION TOOL FRo SIMULATING MATRIX OPERATIONS ON 2/;
AN SIND (SINGLE INS (U) NORTH CAROLINA AGRICJULTURAL
AMO TECHNICAL STATE UNIV GREEN580 H L MARTIN OCT 67

UNCLASSIFIED ARO-222 2-MA-H DRAR29-84-G-8087 FiG 1215 U

In'

."

:t 2.0

..8

'9.

Page A-17

'U end; {CPExecute

(Perform Emulator initialization. *
procedure MIHI Initialize;

* - type chrien - 1.-12;
var

titleline:packed array[1..72] f Computation title.)
of char;

P filenm:packed array[chrlen) of char;
be g in

writeln(output, 'MJHIi START-UP!!');
write(output,' ENTER NAME OF OPERAND FILE :)
readln(input,filenm);
open(oprndfile,filenm,old);

write(output,' ENTER NAME OF CODE FILE :)
readln(irput ,fi lenin);
open(codefile,filenm,old);

write(output,' ENTER NAME OF RESULT FILE :)
readln(input ,fi lenn);
open(resultfile ,filenm,new);
write(output,' ENTER NAME OF TRACE FILE :)

readln(input Jfi lenin)
open(tracefilIc filenm,new);

{Open files and copy codefile title line to all output

{ files.

reset(codefile) ; reset(oprndfile);
rewri te(tracefi le) ; rewrite(resultfi Ic);
readln(codefile,titleline);
writel1n (trace file , titl1eli ne); wr itel n(trace file);
wr itel n(result file ,ti tl1eli ne); wr itel n(result file);
write ln(output)

* write(output,' ENTER NUMBER OF PROCESSORS:')
read ln(input ,NP);

* '. write 1n (output);
writeln(' ENTER PROCESSOR TRACING LEVEL:')
writeln(' 0) NO TRACE.');
writeln(' 1) PROCESSOR STATE ONLY');
writeln(' 2) FULL PROCESSOR TRACE');
readln(input ,TRACE);
for i :- 0 to NP-I do
begin

initprocessor(PE[i].i,(i+I) mod NP.(NP+i-1) mod NP.
(2 0 i mod NP + (2 0 i div NP)

if TRACE > 0
wb then damprocessor(PE[i],TRACE);

end;

{Set up opcodes for PEs and CP.

Page A-18

PEOPC2ODES :- [NOOP ,ADBASE, SETB PALLOC, SEThIA,Al1MA,LOADCA,

STORCA, FCSHF,BCSHF,*PSSHF, SHFIN ,h8VA ,NEVB ,MDVR,
?43VS ,SADD,SSUB, SMPY,SDIV,
VSADD,VSSUBVSMPY,VSDIV,PVADD,PVSUB,PVMPY,
INPRD,TST];

CPOPCODES :- [ENABLE, PUSHM, PULLM,MREAD ,WITE ,SETT, SETV,
CPHALT];

{Initialize active processor mask, and MSTACK.
for i :-0 to NP-i do

ACTIVEMASK.bjt[i] : true;
NAP :- NP;
M[STKTOP :- 0;
Qvfl-I :- 0;

end; I MlHIlnitialize

(Perform MJHI shut-down. *
procedure MJHlShutDown;

var i integer; {Work variable.

begin

{Dump all processor states and local memories.
for i :- 0 to NP-i do

dumprocesSOr(PE[ii,TRACE+2);

close(codefi le) ; close(tracefile) ; close(resultfile);

writeln(output,'MJHI SHUT-D@AMN!V);

end; { MiHlShutDowx

(Determine whether all processors completed last PE
instruction. *)

procedure checkcompletion(NP:integer; var CURMASK:PEmask;
var COMPLETED:boolean);

var i:integer; (Work variable.

begin
COMPLETED :- true;
for i :- 0 to NP-i do

COMPLETED :- COMPLETED AND
(CURMASK.bit[i] AND NOT

PE [iiSTATUS [0]);
end; { checkcompletion

(~Update the active mask based on PE completion codes.
* procedure updatemask(NP:integer; var ACTIVEAASK:PEmask);

,. -o

Page A-19

var i:integer; { work variable. }

begin
for i :- 0 to NP-i do

if ACTIVEMASK.bit[i]
then ACTIVEMASK.bit[i] :NOT PE[i].STATUS[O];

end; { updatemask I

(* Enable processors based on mask. *)

procedure PEEnable(NP:integer; var CURMASK:PEmask;
var NAP:integer);

* " var i:integer; { Work variable. }

begin

C NAP :- 0;
for i :- 0 to NP-i do

-. begin
"" PE[i].STATUS[O] :- CURMASK~bitfi]"

L if CURMASK.bit[i] then NAP :- NAP + 1;
end;

end; { PEEnable }
@ - o

begin { MJHlNEW }

MJHIInitialize;
DumpCPState(NPNAP TRACE ,ACTIVEMASK)"

Ifetch(IR);
while (IR.opcode <> CPHALT) AND (NAP > 0) do
begin

if IR.opcode IN PEOPCODES then
b . begin

"" { Execute PE instruction on active processors.
for i :- 0 to NP-i do

if ACTIVEMASK.bit[i] then
begin

PEexecute(IR,PE[i]);
if TRACE > 0

then dumprocessor(PE[i],TRACE);
, end;

{ Check for completion of all PEs before
proceeding. }

{ Disable PEs that did not complete.

{ NOTE: Calls to Error recovery code goes here.

checkcompletion(NPACTIVEMASK,.XlMPLETED);
if NOT COMPLETED

then updatemask(NP,ACTIVEMASK);

Page A-20

end (PE Instructionl

else if JR.opcode IN CPOPWODES
then CPExecute(IR);

PEEnable(NP,ACTIVEMASK,NAP);

DumpCPState (NP ,NAP ,TRACE .ACTIVEMASK);

I fe tch(IR);

end; I Ex Cycle.

MJHlShutDown;

end. Mu-Il

J,

-

APPENDIX B

.

CODE FILES FOR THE MJH1

Following are existing code files that are currently

operable on the MJHl. The first line of each program gives

matrix dimensions, as well as a coded description of the

..- algorithm used.

A listing of some variables follows:

M - 0 of rows of matrix A

N - # of cols of A and rows of matrix B

P - 0 of cols of result matrix

T - 0 of terms of result matrix

The code files are annotated with simple comments that are

easily understandable. Careful examination of these files should

'. 2aid the potential programmer in creating code files of his own.

s

Page B-2

ALGi: 2 x 3 BY 3 x 2; NP-4. [TEQK] P

0 0 0 0 For r-1 to m
0 0 0 0 for c-l to p
0 0 0 0 ((r-1)p+c)th PE - rth row of [A]
0 0 0 0 & the cth col of [B]

120 0 20 0 Clear 20 words in CM
110 0 2 3 Read matrix A.
111 0 2 3 Echo A.
110 6 3 2 Read matrix B and echo.
Ill 6 3 2 Echo B.

0 0 0 0 Prepare for partitioning.
100 12 0 0 Enable PE's 0 & 1 to load A[I,j]
15 0 0 0 PEs 0,1 at A[1,1].
12 1 3 0 Allocate space in MA for 3 values
20 1 3 0 Move 3 values into MA A[l,j]

100 3 0 0 Enable PEs 2 & 3
15 3 0 0 Set address to A[2,j]
12 1 3 0 Allocate space in MA for 3 values
20 1 3 0 Read A[2,j] into MA

100 10 0 0 Enable PEs 0,2
15 6 0 0 Both PEs can access B[1,1J (coil)

100 5 0 0 Enable PEs 1,3
15 7 0 0 Both PEs can access B[1,2] (col2)

100 15 0 0 Enable all PEs
12 2 3 0 Allocate space for 3 col values of B
11 2 0 0 Set MB base reg to word zero
20 2 1 0 Load 1st value from CM into MB
10 2 1 0 Increment MB by I
16 2 0 0 Increment MAR to access next word from CM
20 2 1 0 Load 2nd value from C into MB
10 2 1 0 Increment LM (MB)
16 2 0 0 Increment MAR to 'access next word from 04
20 2 1 0 Load 3rd value from 0M into MB

103 3 0 0 Get a TRACE snapshot
103 0 0 0

* 0 0 0 0 Prepare to multiply
11 1 0 0 Set LM base register to lIt word
11 2 0 0
11 3 0 0
12 3 1 0 Allocate room in MR for 4 values

103 3 0 0 Start a TRACE snapshot
65 0 3 0 Multiply rows by cols
0 0 0 0 STORE 4 values from each PEs R memory

100 8 0 0 Enable PO
15 12 0 0 Set MAR to lst result

100 4 0 0 Enable P1
15 13 0 0 Set MAR to 2nd result

100 2 0 0 Enable P2
15 14 0 0 Set MAR to 3rd result

100 1 0 0 Enable P3
15 15 0 0 Set MAR to 4th result

100 15 0 0 Enable ALL PEa

0,

Page B-3

21 1 0 0 Store values
103 0 0 0 END TRACE
111 12 2 2 PR INT

255 0 0 0 CPHALT

Page B-4

ALG2A: 2 x 3 BY 3 x 4; NP-4. [PEQK]

0 0 0 0 Entire matrix [A] and one col of vals
0 0 0 0 of [B] in order.

120 0 30 0 Clear 30 words in CM
110 0 2 3 Read matrix A.
111 0 2 3 Echo A.
110 6 3 4 Read matrix B and echo.
111 6 3 4 Echo B.

0 0 0 0 Prepare for Partitioning.
100 15 0 0 Enable PE's 0 & I to load A[1,j]
15 0 0 0 PEs 0,1 at A[1,1].
12 1 6 0 Allocate space in MA for 6 values
20 1 6 0 Move 6 values into MA A[i,j]

100 8 0 0 Enable PE 0
15 6 0 0 Set address to B[1.1]

100 4 0 0 Enable PE I
15 7 0 0 Set address to B[1,2]

100 2 0 0 Enable PE 2
15 8 0 0 Set address to B[1,3]

100 1 0 0 Enable PE 1
15 9 0 0 Set address to B[I1,4]

100 15 0 0 Enable all PEs
103 3 0 0 Start TRACE
12 2 3 0 Allocate space for 3 col values of B
20 2 1 0 Load Ist value from CMI into MB
10 2 1 0 Increment MB by 1
16 4 0 0 Increment MAR to access next word from Q
20 2 1 0 Load 2nd value from CMI into MB
10 2 1 0 Increment LM (MB)
16 4 0 0 Increment MAR to access next word from CM
20 2 1 0 Load 3rd value from CM into MB
10 2 1 0 Increment MB by 1

0 0 0 0 Prepare to multiply
11 1 0 0 Set LM base register to 1st word
11 2 0 0
11 3 0 0
12 3 2 0 Allocate room in MR for 2 values
65 0 3 0 Multiply rows by cola A[I,j]

100 8 0 0 Enable PO
15 18 0 0 Set MAR to lit result

100 4 0 0 Enable P1
15 19 0 0 Set MAR to 2nd result

100 2 0 0 Enable P2
15 20 0 0 Set MAR to 3rd result

100 1 0 0 Enable P3
15 21 0 0 Set MAR to 4th result

100 15 0 0 Enable ALL PEs
21 1 0 0 Store values
0 0 0 0 Prepare to continue multiplication

11 2 0 0 Set LM base register to 3rd word
11 1 3 0 Set LM base reg A to 1st word
65 0 3 0 Multiply rows by cols A[2,J]

Page B-5

100 8 1) 0 Enable P0
15 22 U 0 Set MAR to 5th result

100 4 0 0 Enable Pi
15 23 0 0 Set MAR to 6th result

100 2 0 0 Enable P2
15 24 0 0 Set MAR to 7th result

100 1 0 0 Enable PI
15 25 0 0 Set MAR to final result

100 1s 0 0 Enable ALL
P 21 1 0 0 Send values

.111 18 2 4 PRINT
103 0 0 0 STOP TRACE
255 0 0 0 CPHALT

10

o.

I

12

Page B-6

-. ALG2B: 2 x 3 BY 3 x 4; NP-2. [PMULTK]

0 0 0 0 Entire matrix [A] and p/k cols
O 0 0 0 of vals of [B] in order

120 30 0 0 Clear 30 words in CMl
110 0 2 3 Read matrix A.
111 0 2 3 Echo A.
110 6 3 4 Read matrix B and echo.
111 6 3 4 Echo B.

0 0 0 0 Prepare for partitioning
100 3 0 0 Enable PE's 0 & 1 to load A[1,j]
15 0 0 0 PEs 0,1 at A[1,1].
12 1 6 0 Allocate space in MA for 6 values
20 1 6 0 Move 6 values into MA A[i,j]

100 2 0 0 Enable PE 0
15 6 0 0 Set address to B[1,1]

100 1 0 0 Enable PE 1
15 8 0 0 Set address to B[1,3]

100 3 0 0 Enable both
103 3 0 0 Start TRACE
12 2 6 0 Allocate space for 6 col values of B
11 2 0 0 set MB to 0
20 2 1 0 Load 1st value from CM into MB
10 2 1 0 Increment MB by I
16 4 0 0 Increment MAR to access next word from C4
20 2 1 0 Load 2nd value from CM into MB
10 2 1 0 Increment LM (MB)
16 4 0 0 Increment MAR to access next word from CMf
20 2 1 0 Load 3rd value from CM into MB
10 2 1 0 Increment MB by 1

100 2 0 0 Enable PE 2
15 7 0 0 Set MAR to B[1,2]

100 1 0 0 Enable PE 1
15 9 0 0 Set MAR to B[1,4]

100 3 0 0 Enable ALL
20 2 1 0 Read 4th val
16 4 0 0 Increment MAR
10 2 1 0 Increment MB
20 2 1 0 Load 5th val
16 4 0 0 Increment MAR
10 2 1 0 Increment MB
20 2 1 0 Load next word

0 0 0 0 Prepare to multiply
11 1 0 0 Set LM base register to lot word
11 2 0 0
11 3 0 0
12 3 4 0 Allocate room in MR for 4 values
65 0 3 0 Multiply rows by cols A[Ij]
11 1 0 0 Set LM to row 1
11 2 3 0 Set LM to col 2
65 13 0
11 1 3 0 Set to row 2
11 2 0 0 Set to col 1

04 - ;

Page B-7

65 2 3 0
11 1 3 0 Set to row 2
11 2 3 0 Set to col 2
65 3 3 0
100 2 0 0 Enable PO
15 18 0 0 Set MAR to 1st result

100 1 0 0 Enable P1
15 20 0 0 Set MAR to 2nd result

100 3 0 0 Enable all
21 2 0 0 Store values

1 100 2 0 0
15 22 0 0 Set to C[2,1]

100 1 0 0
' 15 24 0 0 Set to C[2,1]

100 3 0 0
11 3 2 0 Set to 3rd value in MR
21 2 0 0

111 18 2 4 PRINT
103 0 0 0 STOP TRACE
255 0 0 0 CPHALT

'

h!.

-2~y

Page B-8

ALG3A: 4 x 1 BY I x 2; NP-4. [MEQKI

O 0 0 0 One row of values of [A] and entire [B)

120 16 0 0 Clear 16 words in C
110 0 4 1 Read matrix A.
111 0 4 1 Echo A.

110 4 1 2 Read matrix B and echo.
111 4 1 2 Echo B.

0 0 0 0 Start alocation
100 15 0 0 Enable ALL PE's to load B
15 4 0 0 PEs at B[1,1].
12 2 2 0 Allocate space in MB for 2 values
20 2 2 0 Move 2 values into MB

100 8 0 0 Enable PE 0
15 0 0 0 Set address to A[1,1]

100 4 0 0 Enable PE I
15 1 0 0 Set address to A[2,1]

100 2 0 0 Enable PE 3
15 2 0 0 A[3,1]

100 1 0 0 Enable PE 4
15 3 0 0 A[4,1]

100 15 0 0 Enable ALL
103 3 0 0 Start TRACE
12 1 1 0 Allocate space for A
20 1 1 0 Load various rows into MA

0 0 0 0 Prepare to multiply
11 1 0 0 Set MA to 0
11 2 0 0 Set MB to 0

-s 11 3 0 0 Set MR to 0
12 3 2 0 Allocate room in MR for 2 values
65 0 1 0 Multiply
11 1 0 0
11 2 1 0 Reset B
65 1 1 0
100 8 0 0 Enable PO

* 15 6 0 0 Set MAR to 1st result
100 4 0 0 Enable P1
15 8 0 0 Set MAR to 2nd result

100 2 0 0 Enable PE 2
15 10 0 0

100 1 0 0 Enable PE I
O 15 12 0 0 Set MAR to 4th result

100 15 0 0 Enable ALL
11 3 0 0
21 1 0 0 Store Ist result
100 8 0 0
15 7 0 0

100 4 0 0
. 15 9 0 0

100 2 0 0
15 11 0 0

100 1 0 0

.Or

Page B-9

15 130 0
100 15 0 0 Enable ALL
11 3 1 0A21 1 0 0 Store other vals of C

Ill 6 4 2 PR INT
-103 0 0 0 STOP TRACE

*255 0 0 0 CPHALT

Page B-10

ALG3B: 4 x I BY 1 x 2; NP-2. [NtLMLTK]

0 0 0 0 (m/k) rows of [A] and entire [B]
120 16 0 0 Clear 16 words in CM
110 0 4 1 Read matrix A.
111 0 4 1 Echo A.

' 110 4 1 2 Read matrix B and echo.
Ill 4 1 2 Echo B.

0 0 0 0 Start alocation
100 3 0 0 Enable ALL PE's to load B
15 4 0 0 PEs at B[1,1].
12 2 2 0 Allocate space in MB for 2 values
20 2 2 0 Move 2 values into MB

100 2 0 0 Enable PE 0
15 0 0 0 Set address to A[I,1]

J 100 1 0 0 Enable PE 1
15 2 0 0 Set address to A[3,1]

100 3 0 0 Enable ALL PEs
v 103 3 0 0 Start TRACE
* 12 1 2 0 Allocate space for A

20 1 2 0 Load various rows into MA
0 0 0 0 Prepare to multiply

11 1 0 0 Set MA to 0
11 2 0 0 Set MB to 0
11 3 0 0 Set MR to 0
12 3 4 0 Allocate room in MR for 2 values

65 0 1 0 Multiply

11 1 0 0 Reset B
11 2 1 0
65 1 1 0
11 1 1 0
11 2 0 0

- 65 2 1 0
11 1 0
11 2 1 0
65 3 1 0t 100 2 0 0 Enable PO
15 6 0 0 Set MAR to 1st result

100 1 0 0 Enable P1
15 10 0 0 Set MAR to 2nd result

100 3 0 0 Enable ALL PEs
I 11 3 0 0

21 4 0 0 Store 1st results
111 6 4 2 PRINT
103 0 0 0 STOP TRACE
255 0 0 0 CPHALT

[•,

Page B-11

- ALG4A: 2x2 by 2x4; NP-4 [TMTLTK]

0 0 0 0 For r-1 to m
0 0 0 0 { for c - 1 to q (k-qm)
0 0 0 0 { ((r-1)q+c)th PE - rth row [A]
0 0 0 0 and cth string of j cols of [B]
0 0 0 0 in order))

120 0 24 0 Allocate space for A,B,R
110 0 2 2 Read A
111 0 2 2 Echo A
110 4 2 4 Read B
111 4 2 4 Echo

* 0 0 0 0 Prepare to Partition
12 1 2 0 Allocate 2 spaces in A

100 12 0 0 Enable PEs 1,2
15 0 0 0 Set MAR to origin
20 1 2 0 Read Ist row of A into PEs 1,2
100 3 0 0 Enable PE 3,4
15 2 0 0 Set MAR to row 2 of A
20 1 2 0 Read 2nd row of A into PE 3,4
0 0 0 0 Prepare to load cols

100 10 0 0 Enable PE 1,3
15 4 0 0 Set MAR to 4 B[I,I]

100 5 0 0 Enable PE 2,4
15 6 0 0 Set MAR to 6 B[1,3]

100 15 0 0 Enable ALL PEs
11 2 0 0 Set MB to 0
12 2 4 0 Allocate 4 values in B
20 2 1 0 Read 1 value
10 2 1 0 Increment MB by 1
16 4 0 0 Increment MAR by 4
20 2 1 0 Read 1 value
10 2 1 0 Advance MB

, 100 10 0 0 Enable PE 1,3
15 5 0 0 Set MAR to 2nd col

. 100 5 0 0
15 7 0 0

100 15 0 0
20 2 1 0 Read in next value

. 10 2 1 0 Increment LM B
16 4 0 0 Advance MAR to next col value
20 2 1 0 Read in next value

* 0 0 0 0 Perform multiplication
11 1 0 0

) 11 2 0 0 Set LM base register to 1st word
11 3 0 0
0 0 0 0 Prepare to multiply

65 0 2 0 Multiply 1st value11 2 2 0 Increment MB to 2nd col
11 1 0 0 Do A again
65 1 2 0 Multiply again (2nd val)
0 0 0 0 Prepare to PRINT result

100 8 0 0 Enable PE 1

Page B-12

15 12 0 0 Position for [1,1]
100 4 0 0 Enable PE 2
15 14 0 0 Position for [1,3]

100 2 0 0 Enable PE 3
15 16 0 0 Position for [2,1]

100 1 0 0 Enable PE 4
15 18 0 0 Position for [2,2]

- 100 15 0 0 Enable ALL PEs
21 2 0 0 Send values

111 12 2 4 PRINT
255 0 0 0 CPHALT

.

4.o'.

'

9:-
J* ..

L
Page B-13

- ALG4B: 4x2 by 2x2; NP-4 [PSUBK]

0000 for q -Ito p
0 0 0 0 { for c - 1 to r
0 0 0 0 {((q-1)r+c)th PE -

' " 0 0 0 0 cth string of j rows of [A]
0 0 0 0 in order and qth col of [B]

120 24 0 0 Allocate space for A,BC
110 0 4 2 Read A
111 0 4 2 Echo
110 8 2 2 Read B
111 8 2 2 Echo

0 0 0 0 Partition Matrices
100 10 0 0 Enable PEs 1,3

s 15 0 0 0 Set MAR to origin
12 1 4 0 Allocate 4 values in A
20 1 4 0 Read 1st 2 rows of A

100 5 0 0 Enable PEs 2,4
12 1 4 0 Allocate 4 more values
15 4 0 0 Set MAR up by 4
20 1 4 0 Read in 2nd 2 rows of A
100 12 0 0 Enable PEs 1,2
15 8 0 0 Set MAR to B[1,1]

100 3 0 0 Enable PEs 3.4
15 9 0 0 Set MAR to B[I,2]

100 15 0 0 Enable ALL
12 2 2 0 Allocate 2 values in B
20 2 1 0 Read in 1st col value
16 2 0 0 Increment MAR by 2
10 2 1 0 Increment MB by 1
20 2 1 0 Read in 2nd col value

0 0 0 0 Prepare to multiply
11 1 0 0

. 11 2 0 0 Set ALL LM bases to 0
11 3 0 0
12 3 2 0 Al'ote values in MR
65 0 2 0 Multiply once for lst row value
11 1 2 0
11 2 0 0 Reset MB to top of col
65 1 2 0 Multiply again for 2nd col value

.0 0 0 0 Prepare to write out result
100 8 0 0 Enable PE I

6 15 12 0 0 Set MAR to 1st result in RESULT MATRIX
100 4 0 0 Enable PE 2
15 16 0 0 Set MAR

100 2 0 0 Enable PE 3
15 13 0 0 Set MAR

100 1 0 0 Enable PE 4
15 17 0 0 Set MAR

100 15 0 0 Enable ALL
11 3 0 0
21 1 0 0 Send values
16 2 0 0 Increment MAR by 2

Page B-14

A.11 3 1 0
21 1 0 0 Send values

111 12 4 2 Write (PRINT) result
255 0 0 0 CPHALT

Page B-15

ALG5A: 3x4 by 4x2; NP-4 [TGTNEQK]

0 0 0 0 one col of [A] and one row of [B] in orderS 0 0 0 0 Load matrices
120 30 0 0 Allocate space in CM
110 0 3 4 Read in A
111 0 3 4 Echo
110 12 4 2 Read B
111 12 4 2 Echo

0 0 0 0 Partition Matrices
100 8 0 0 Enable PE 1
15 0 0 0 Set MAR to origin

100 4 0 0 Enable PE 2
15 1 0 0 Set MAR to A[1,2]

100 2 0 0 Enable PE 3
15 2 0 0 Set MAR to A[I1,3]

100 1 0 0 Enable PE 4
15 3 0 0 Set MAR to A[1,4]

100 15 0 0 Enable ALL
12 1 3 0 Allocate 3 spaces in MA
20 1 1 0 Read in 1st col value of A
16 4 0 0 Increment MAR
10 1 1 0 Increment MA
20 1 1 0 Read 2nd col value of A
16 4 0 0 Increment MAR
10 1 1 0 Increment MA
20 1 1 0 Read 3rd col value of A

100 8 0 0 Enable PE 1
15 12 0 0 Set MAR to row 1 of B

100 4 0 0 Enable PE 2
15 14 0 0 Set MAR to row 2 of B

100 2 0 0 Enable PE 3
15 16 0 0 Set MAR to row 3 of B

100 1 0 0 Enable PE 4
15 18 0 0 Set MAR to row 4 of B

100 15 0 0 Enable ALL
12 2 2 0
20 2 2 0 Read 1 row of B

0 0 0 0 Prepare to Multiply
11 1 0 0

N 11 2 0 0 Set LM bases to 0
11 3 0 0

.1 12 3 6 0 Allocate 6 values in MR
65 0 1 0 Multiply to find 1st INPRD
11 1 1 0 Increment MA
11 2 0 0 Dec MB (back at origin)
65 1 1 0 Multiply 2nd col value

"' 11 1 2 0 Increase MA to 3rd value
11 2 0 0 Keep MB at origin
65 2 1 0 Multiply 3rd col value of INPRD
11 1 0 0 Dec MA to origin
11 2 1 0 Inc MB to 2nd col
65 3 1 0 Multiply 4th INPRD

Page B-16
- q

11 1 1 0
-- 11 2 1 0

65 4 1 0 Multiply 5th INPRD
11 1 2 0

-' 11 2 1 0
65 5 1 0 Multiply 6th INPRD
0 0 0 0 Prepare for INTERPROCESSOR COOWvUNICATION

11 1 0 0
11 2 0 0 Reset LMs
11 3 0 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[0]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 2nd FINAL RESULT

11 1 1 0
11 2 1 C Reset LMs
11 3 1 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MRIt]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward

* 25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA

4 22 1 1 0 Shift forward
25 1 1 0 Receive shifted data

,0 31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 3rd FINAL RESULT

11 1 2 0
11 2 2 0 Reset LMs

* 11 3 2 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB

0""i " "" -""- ,- : -'" , "" : " "" "

Page B-17

40 0 0 0 Add previous result to MS;Store in MR[1]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data

* 31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 4th FINAL RESULT

• 11 1 3 0
11 2 3 0 Reset I.Ms
11 3 3 0

- 30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[11
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data

-. 31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 5th FINAL RESULT

11 1 4 0
11 2 4 0 Reset LMs
11 3 4 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB

; 40 0 0 0 Add previous result to MS;Store in MR[I1]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA

* 22 1 1 0 Shift forward
25 1 1 0 Receive shifted data

* 31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 6th FINAL RESULT

11 1 5 0
" 11 2 5 0 Reset LMs

11 3 5 0

*'

ij

Page B-18

30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS

100 8 0 0 Enable PE I
11 3 0 0
15 20 0 0 Set MAR to Ist result

100 4 0 0 Enable PE 2
11 3 3 0

. 15 21 0 0 Set MAR to 2nd result
100 2 0 0 Enable PE 3
11 3 1 0
15 22 0 0 Set MAR to 3rd result

100 1 0 0 Enable PE 4
11 3 4 0
15 23 0 0 Set MAR to 4th result
100 15 0 0 Enable ALL
21 1 0 0 Send I value

100 12 0 0 Enable PEs 1,2
10 3 2 0
16 4 0 0
21 1 0 0

111 20 3 2 PRINT
255 0 0 0 CPHALT

Page B-19

ALG5B: 3x8 by 8x2; NP-4 [TGTKNMULTK]

0 0 0 0 (n/k) cols of [A) and
0 0 0 0 (n/k) rows of [B] in order
0 0 0 0 Load matrices

120 48 0 0 Allocate space for 48 spaces
110 0 3 8 Read A
111 0 3 8 Echo
110 24 8 2 Read B
Ill 24 8 2 Echo

0 0 0 0 Partition matrices
100 8 0 0 Enable PE I
15 0 0 0 Set MAR to origin

100 4 0 0 Enable PE 2
15 2 0 0 Set MAR to A[I,3]
100 2 0 0 Enable PE 3
15 4 0 0 Set MAR to A[1,5]
100 1 0 0 Enable PE 4

.* 15 6 0 0 Set MAR to A[1,7]
100 15 0 0 Enable ALL
12 1 6 0 Allocate enough space for 6 values
20 1 2 0 Read Ist 2 values
16 8 0 0 Increment MAR
10 1 2 0 Increment MA
20 1 2 0 Read 2nd col value
16 8 0 0 Increment MAR
10 1 2 0 Increment MA
20 1 2 0 Read 3rd col value
1 100 8 0 0 Enable PE 4
15 24 0 0 Beginning of B[1,1]
100 4 0 0 Enable PE 3
15 28 0 0

100 2 0 0 Enable 2
15 32 0 0
100 1 0 0 Enable I
15 36 0 0

100 15 0 0 Enable ALL
12 2 4 0 Allocate 4 values in B
20 2 1 0 Read in I value
10 2 1 0
16 2 0 0

- 20 2 1 0
100 8 0 0
15 25 0 0

100 4 0 0
15 29 0 0

100 2 0 0
15 33 0 0

100 1 0 0
15 37 0 0

100 15 0 0
10 2 1 0
20 2 1 0
16 2 0 0

S -. *- * - ..- - " * t.,. ,

Page B-20

10 2 1 0
20 2 1 0

0 0 0 0 Multiply scheme
11 1 0 0
11 2 0 0 Set LM to 0 (origin)
11 3 0 0
12 3 6 0 Allocate space in MR for 6 INPRD
65 0 2 0 Multiply 1st INPRD
11 1 2 0
11 2 0 0
65 1 2 0
11 1 4 0
11 2 0 0
65 2 2 0
11 1 0 0
11 2 2 0
65 3 2 0
11 1 2 0

.% 11 2 2 0
65 4 2 0
11 1 4 0
11 2 2 0
65 5 2 0
0 0 0 0 INTERPROCESSOR CXMMUNICATION

11 1 0 0
11 2 0 0 Reset LMs
11 3 0 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[0]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS

-. 30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 2nd FINAL RESULT

11 1 1 0
11 2 1 0 Reset IMs
11 3 1 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward

" 25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[I]
30 3 1 0 Move result to MA

@4

Page B-21

22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward

- 25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS

U 0 0 0 0 Get 3rd FINAL RESULT
11 1 2 0
11 2 2 0 Reset LMs
11 3 2 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1]

. 30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data

31 4 1 0 Put MS into MB
' 40 0 0 0 Add previous result to MS

30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS

" 0 0 0 0 Get 4th FINAL RESULT
- 11 1 3 0

11 2 3 0 Reset LMs
11 3 3 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward

" 25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 5th FINAL RESULT

11 1 4 0
11 2 4 0 Reset LMs
11 3 4 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT

Page B-22

22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[I]
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
0 0 0 0 Get 6th FINAL RESULT

11 1 5 0
11 2 5 0 Reset LMs
11 3 5 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[l)
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
30 3 1 0 Move result to MA
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS
100 8 0 0 Enable PE I
11 3 0 0
15 20 0 0 Set MAR to Ist result

100 4 0 0 Enable PE 2
11 3 3 0
15 21 0 0 Set MAR to 2nd result

100 2 0 0 Enable PE 3
11 3 1 0
15 22 0 0 Set MAR to 3rd result

100 1 0 0 Enable PE 4
11 3 4 0
15 23 0 0 Set MAR to 4th result

100 15 0 0 Enable ALL
21 1 0 0 Send 1 value

100 12 0 0 Enable PEs 1.2
10 3 2 0
16 4 0 0
21 1 0 0

111 20 3 2 PRINT
255 0 0 0 CPHALT

- ". -. -. . -. - . - . . -, --. --

Page B-23

" ". ALGSCI: 6X2 by 2X1; NP-4 [TGTKNSUBKAMK]

o 0 00 For r-l ton
0 0 0 0 { for 1-0 to (k/n-i)
0 0 0 0 {(In+r)th PE gets (l+1)th,
0 0 0 0 (mn/k) vals of col r of [A]

* - 0 0 0 0 & rth row of values of [B]
0 0 0 0 Load matrices

120 24 0 0 Allocate 24 spacesA 110 0 6 2 Read matrix A
111 0 6 2 Echo
110 12 2 1 Read matrix B
111 12 2 1 Echo B

0 0 0 0 Partition matrices
100 8 0 0 Enable PE 1
15 0 0 0 Set MAR to A[1,1]

100 2 0 0 Enable PE 3
15 6 0 0 Set MAR to A[1,1]

1 100 4 0 0 Enable PE 2
15 1 0 0 Set MAR to A[2,1]

100 1 0 0 Enable PE 4
15 7 0 0 Set MAR to A[2,4]

100 15 0 0 Enable ALL
12 1 3 0 Allocate 3 values in MA
20 1 1 0 Read Ist value
10 1 1 0 Increment MA
16 2 0 0 Increment MAR by 2
20 1 1 0 Read 2nd col value
1) , 10 1 1 0 Increment MA
16 2 0 0 Increment MAR by 2

20 1 1 0 Read 3rd col val
100 10 0 0 Enable PEs 1,3
15 12 0 0 Set MAR to B[1,1]

100 5 0 0 Enable PEs 2,4
4 . 15 13 0 0 Set MAR to B[2,1]

100 15 0 0 Enable ALL
12 2 1 0 Allocate space in MB
20 2 1 0 Read in 1 row for all PE's

0 0 0 0 Prepare to multiply

11 1 0 0
", 11 2 0 0 Set ALL LM to 0

11 3 0 0
12 3 3 0 Allocate 3 values in MR
65 0 1 0 1st INPRD

, .. 11 1 1 0
11 2 0 0
65 1 1 0 2nd INPRD
11 1 2 0
11 2 0 0
65 2 1 0 3rd INPRD
0 0 0 0 Prepare for INTERPROCESSOR CXIUNICATION

11 1 0 0
11 2 0 0 Reset LMs

pA

V I I W W 1K, I- k- V W- Wr K7w - k k7 " 1- 7 ' L 7 7-

Page B-24

11 3 0 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[0]
0 0 0 0 Get 2nd FINAL RESULT

11 1 1 0
11 2 1 0 Reset L.Ms
11 3 1 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[I]
0 0 0 0 Get 3rd FINAL RESULT

11 1 2 0
11 2 2 0 Reset LMs

* 11 3 2 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward

* 25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[I]
0 0 0 0 Prepare to output

11 3 0 0 Reset Result memory
100 4 0 0 Enable PE 2
15 14 0 0 Set result to Ist location

100 1 0 0 Enable PE 4
15 17 0 0 Set result to 2nd 3 col values

100 5 0 0 Enable 2 PEs 2,4
21 3 0 0 Read 3 values

111 14 6 1
255 0 0 0 CPHALTaLM

Sg

Page B-25

ALGSCII: 1X2 by 2X6; NP-4 [TGTKNS BKBMK]

0 0 0 0 Load matrices
120 24 0 0 Allocate space for matrices
110 0 1 2 Load matrix A
il 0 1 2 Echo
110 2 2 6 Load matrix B
ill 2 2 6 Echo

. 0 0 0 0 Partition A and B
100 10 0 0 Enable 1,3
15 0 0 0 A[l,1]

100 5 0 0 Enable 2,4
15 1 0 0 A[1,2)

100 15 0 0 Enable ALL
12 1 1 0 Reserve 1 space for A
20 1 1 0 Read in 1 value
100 8 0 0 Enable I
15 2 0 0 B[1,1]

100 2 0 0 Enable 3
15 5 0 0 B[1,4]

100 4 0 0 Enable 2
15 8 0 0 B[2,1]

100 1 0 0 Enable 4
15 11 0 0 B[2,4)

100 15 0 0
12 2 3 0 Allocate 3 values in B
20 2 3 0 Read in 3 row vals of [B]

0 0 0 0 Prepare to multiply
12 3 3 0 Allocate 3 spaces in MR
11 1 0 0
11 2 0 0 Reset local memories
11 3 0 0
65 0 1 0 Find Ist INPRD
11 1 0 0 Reset A

. 10 2 1 0 Increment B
65 1 1 0 Find 2nd INPRD
11 1 0 0 Reset A
10 2 1 0 Increment MR
65 2 1 0 Find 3rd INPRD
0 0 0 0 Prepare for INTERPROCESSOR COMMUNICATION

11 1 0 0
11 2 0 0 Reset LMs
11 3 0 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[O]
0 0 0 0 Get 2nd FINAL RESULT

11 1 1 0
11 2 1 0 Reset LMs
11 3 1 0

I..' I-++¢-"m+ "' ' -'w Ir ,,-+ T,... "! " ++ I

Page B-26

30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1]
0 0 0 0 Get 3rd FINAL RESULT

11 1 2 0
11 2 2 0 Reset LMs.
11 3 2 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[I]
0 0 0 0 Prepare to output

11 3 0 0 Reset Result memory
100 4 0 0 Enable PE 2
15 14 0 0 Set result to 1st location

4 100 1 0 0 Enable PE 4
15 17 0 0 Set result to 2nd 3 col values

100 5 0 0 Enable 2 PEs 2,4
21 3 0 0 Read 3 values

Il 14 1 6
255 0 0 0 CPHALT

4.

p.

I°

Page B-27

A ALG5DI: 3X2 by 2X3; NP-4 [TGTKNSUBKBMGiTPJ

SO FAR, This W)N'T W)URK FOR THIS CASE. THERE SEEMS TO BE
SOMETHING WNRONG WITH THE ALGOR ITHM. IT I S NOT ALLOWI NG FOR Raw 2
OF MATRIX [A] TO BE ALLOCATED TO ANY PE.

Page B-28

ALG5DII: 3x2 by 2x5; NP - 4 [TGTKNSUBKMLTP]

0 0 0 0 For c-i to n
O O 0 0 { for 1-0 to (k/n-i)
0 0 0 0 (ln+c)th PE gets cth col of [A] and
0 0 0 0 (l+1)th string of (in/k) vals of row c
0 0 0 0 of [B]
0 0 0 0 ADD'L VALS:
0 0 0 0 For c-(i+l) to p
0 0 0 0 { for r-1 to n
0 0 0 0 { ((c-(i+l))n+r)th PE gets rth row value of
0 0 0 0 cth col of [B]

120 24 0 0 allocate space for matrices
110 0 3 2 Read [A]
111 0 3 2
110 6 2 5 Read [B]
111 6 2 5

0 0 0 0 Prepare to Partition
100 10 0 0 Enable PE 1,3
15 0 0 0 Set MAR to A[I,I]

100 5 0 0 Enable PE 2,4
15 1 0 0 Set MAR A[1,2]

100 15 0 0 Enable ALL
12 1 3 0 Allocate 3 values in MA
20 1 1 0 Read I value
11 1 1 0 Set LM A to 1
16 2 0 0 Increment MAR by 2
20 1 1 0 Read 1 more val
II 1 2 0 Set LM A to 2
16 2 0 0 Increment MAR by 2
20 1 1 0 Read final A value
100 8 0 0 Enable 1
15 6 0 0 B[1,1

100 2 0 0 Enable 3
15 8 0 0 B[I.3]

100 4 0 0 Enable 2
15 11 0 0 B[2,1]

100 1 0 0 Enable 4
15 13 0 0 B[2,3]

100 15 0 0 Enable ALL

12 2 3 0 Allocate space for 3 values in MB
20 2 2 0 Read in 2 row values

100 8 0 0 Enable PE I
0 15 10 0 0 Set MAR B[1.5]

100 4 0 0 Enable PE 2
15 15 0 0 Set MAR B[2,5]

- 100 12 0 0

10 2 2 0
20 2 1 0

0 0 0 0 Prepare to multiply
100 15 0 0 Enable ALL
12 3 9 0 Allocate space for 9 values
i1 1 0 0

Page B-29

11 2 0 0 Set LM's to 0
11 3 0 0
65 0 1 0 Multiply 1st INPRD
10 1 1 0 Increment MA
11 2 0 0 Reset B
65 1 1 0 Multiply 2nd INPRD
10 1 1 0 Increment MA
11 2 0 0 Reset B
65 2 1 0 Multiply again
11 1 0 0 Reset A for 2nd col
11 2 1 0 Reset B for 2nd col
65 3 1 0
10 1 1 0 Increment MA
11 2 1 0 Reset B
65 4 1 0 Multiply 2nd value
10 1 1 0 Increment MA

- 11 2 1 0 Reset B
65 5 1 0 Last INPRD for regular allocation
0 0 0 0 Now for additional values

100 12 0 0 Reset A
.r. 11 1 0 0 RetA

11 2 2 0 Set B
65 6 1 0 Multiply
11 1 0 0 Reset A
11 2 3 0 Set [B]

* 65 7 1 0 Last INPRD for additional values

0 0 0 0 Prepare for INTEPROCESSOR COMWINICATION
100 15 0 0 Enable ALL

" 11 1 0 0
11 2 0 0 Reset LMs
11 3 0 0
30 3 1 0 Move MR to MA

. 33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data

p . 31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[0]
0 0 0 0 Get 2nd FINAL RESULT

11 1 1 0
* 11 2 1 0 Reset I.Ms

"11 3 1 0

30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward

- 25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1]

100 12 0 0
0 0 0 0 Get 3rd FINAL RESULT

11 1 2 0
11 2 2 0 Reset 12Ms
11 3 2 0
30 3 1 0 Move MR to MA

* 33 3 1 0 Put one value on SPORT

~Page B-30~I

22 1 1 0 Shift forward

25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[l] I
0 0 0 0 Get 4th FINAL RESULT

11 1 3 0
11 2 3 0 Reset LMs
11 3 3 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
25 1 1 0 Receive shifted data

31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[I1]
0 0 0 0 Get 4th FINAL RESULT

11 1 4 0
11 2 4 0 Reset LMs

', 11 3 4 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1]
0 0 0 0 Get 5th FINAL RESULT

11 1 2 0
11 2 2 0 Reset LMs
11 3 2 0
30 3 1 0 Move MR to MA
33 3 1 0 Put one value on SPORT
22 1 1 0 Shift forward
25 1 1 0 Receive shifted data
31 4 1 0 Put MS into MB
40 0 0 0 Add previous result to MS;Store in MR[1]
0 0 0 0 Prepare to output

11 3 0 0 Reset Result memory
100 4 0 0 Enable PE 2
15 16 0 0 Set result to 1st location

100 1 0 0 Enable PE 4
15 17 0 0 Set result to 2nd 3 col values

100 2 0 0 Enable 3
'p 15 18 0

100 1 0 0
', 15 19 0 0
1 100 15 0 0

21 1 0 0 Read 1 value
10 3 1 0
16 5 0 0

* 21 1 0 0
10 3 1 0
16 5 0 0
21 1 0 0
100 4 0 0
10 3 1 0
15 20 0 0

- a

. w 1 7

Page B-31

21 1 0 0
10 3 1 0
16 1 0 0
21 1 0 0
10 3 1 0
16 1 0 0
21 1 0 0

111 14 3 5
255 0 0 0 CPHALT

hi

Page B-32

ALG5E: 2X3 by 3X3; NP-4 [TGTKMSUBK]

0 0 0 0 For s-i to i
0 0 0 0 { sth string of m PEs get
0 0 0 0 m rows in order of [Al and,
0 0 0 0 for c-0 to j
0 0 0 0 { (ck/m+s)th col of vals of [B]
0 0 0 0 ADD'L VALS:

A 0 0 0 0 for s-(i+l) to k/m (if s>p)
0 0 0 0 { sth string of m processors get m rows
0 0 0 0 of [A] in order and,
0 0 0 0 for c-0 to (j-1)
0 0 0 0 {(ck/m+s)th col of vals of [B]
O 0 0 0 Load matrices

120 24 0 0 Allocate 24 values
110 0 2 3 Read A
111 0 2 3 Echo
110 6 3 3 Read B
111 6 3 3 Echo

* 0 0 0 0 Prepare to partition A and B
100 15 0 0 Enable ALL
15 0 0 0 A[1,1]
12 1 6 0 Allocate 6 values
20 1 6 0 Read in A

100 12 0 0 Enable PEs 1.2
15 6 0 0 B[I,1]

100 3 0 0 Enable PEs 3,4
15 8 0 0 B[I1

100 15 0 0 Enable ALL
11 2 0 0
12 2 6 0 Reserve 6 spaces in B
20 2 1 0 Read Ist col value
16 3 0 0 Increment to next value
10 2 1 0 Increment MB
20 2 1 0 Read 2nd val
16 3 0 0 Increment MAR
10 2 1 0 Increment MB
20 2 1 0 Read another value
10 2 1 0 Increment MB

- 100 3 0 0 Enable PEs 3,4
15 7 0 0 B[I,2]
20 2 1 0 Read in 2nd col of B
16 3 0 0 Increment MAR

* 10 2 1 0 Increment MB
20 2 1 0 Read val
16 3 0 0 Increment MAR
10 2 1 0 Increment MB
20 2 1 0 Read final value

0 0 0 0 Prepare to multiply
100 15 0 0 Enable ALL
11 1 0 0
11 2 0 0 Set ALL LM to 0
11 3 0 0

,1

Page B-33

65 0 3 0 Find 1st INPRD
11 1 3 0 Advance to row 2
11 2 0 0 Reset B
65 1 3 0 Find 2nd INPRD
15 3 0 0 Prepare for left overs

. 11 1 0 0
* 11 2 3 0

65 2 3 0 1st of add'l values
11 1 3 0
11 2 3 0
65 3 3 0 2nd of add'l values
0 0 0 0 Prepare to write out values

100 8 0 0 Enable PE 1
15 is 0 0 C[III
100 2 0 0 Enable PE 3
15 17 0 0 C[1,3]

100 10 0 0 Enable PEs 1,3
11 3 0 0
21 1 0 0 Send 1st col val
10 3 1 0
16 3 0 0
21 1 0 0 Send 2nd col val
100 2 0 0 Enable PE 3 only

* 15 16 0 0
10 3 1 0 Advance MR
21 1 0 0
16 3 0 0 Increment to correct location
10 3 1 0 Advance MR
21 1 0 0

111 15 2 3
255 0 0 0

,

Io

| -,

Page B-34

ALGSF: 3x2 by 2x2; NP-4 [TGTKPSUBK]

o o 0 0 For s-I to
0 0 0 0 { sth string of p processors get

- 0 0 0 0 p co!s of B] in order, and
. 0 0 0 0 for r-0 to j
. 0 0 0 0 { (rk/p+s)th row of vals of [A]

0 0 0 0 ADD'L VALS:
0 0 0 0 for s-(i+l) to k/p (if s<m)
0 0 0 0 { sth string of p processors is allocated
0 0 0 0 p cols in order of [B] and.
0 0 0 0 for r-0 to (j-1)
0 0 0 0 ((rk/p+s)th row of vals of [A]
0 0 0 0 Prepare to load matrices

120 20 0 0 Allocate space for 20 values
110 0 3 2 Read [A]
111 0 3 2 Echo
110 6 2 2 Read [B]
111 6 2 2 Echo

0 0 0 0 Partition matrices
100 12 0 0 Enable 1,2
15 0 0 0 A[1,1]

100 3 0 0 Enable 3,4
" 15 2 0 0 A[2,1]

100 15 0 0 Enable ALL
11 1 0 0 Set MA to zero

* 12 1 4 0 Allocate space for 4 values in MA
20 1 2 0 Read 1st row

100 12 0 0 Activate only 1,2
16 4 0 0 Increment MAR
10 1 2 0 Increment LM
20 1 2 0 Read 2nd row

100 15 0 0 Enable All
15 6 0 0 B[II]
12 2 4 0 Reserve space for 4 words
20 2 4 0 Read B

0 0 0 0 Prepare to multiply
12 3 4 0 Allocate values in MR
11 1 0 0
11 2 0 0 Set LM to 0
11 3 0 0
65 0 2 0 Multiply to find INPRD
11 1 0 0 Reset A
11 2 2 0 Set MB to second column

.65 1 2 0 Multiply for 2nd INPRD
11 1 2 0

11 2 0 0
65 2 2 0
11 1 2 0
11 2 2 0
65 3 2 0
0 0 0 0 Prepare to PRINT

11 3 0 0

.4

Page B-35

100 8 0 0
15 10 0 0 C[i i

100 2 0 0
15 12 0 0 C [2,1

100 4 0 0
*11 3 2 0
*15 140 0

100 15 0 0
21 2 0 0 Send 2 values over

10 0 0 0 PRINT
111 10 3 2 Print Result
255 0 0 0 CPHalt

*jaw

4 ~0000- 0 1* 0 0 0 0 0 0 A* 0.

4 -

* 9\i **j

